Spaces:
Sleeping
Sleeping
from PIL import Image | |
import torchvision.transforms as transforms | |
import gradio as gr | |
import torch | |
import torch.nn as nn | |
latent_dim = 100 | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class Generator(nn.Module): | |
def __init__(self, latent_dim=100, img_channels=3, feature_map_size=32): | |
super(Generator, self).__init__() | |
self.net = nn.Sequential( | |
nn.ConvTranspose2d(latent_dim, feature_map_size * 8, 4, 1, 0, bias=False), | |
nn.BatchNorm2d(feature_map_size * 8), | |
nn.ReLU(True), | |
nn.ConvTranspose2d(feature_map_size * 8, feature_map_size * 4, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(feature_map_size * 4), | |
nn.ReLU(True), | |
nn.ConvTranspose2d(feature_map_size * 4, feature_map_size * 2, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(feature_map_size * 2), | |
nn.ReLU(True), | |
nn.ConvTranspose2d(feature_map_size * 2, feature_map_size, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(feature_map_size), | |
nn.ReLU(True), | |
nn.ConvTranspose2d(feature_map_size, img_channels, 4, 2, 1, bias=False), | |
nn.Tanh() | |
) | |
def forward(self, x): | |
return self.net(x) | |
def generate_artwork(generator, latent_dim=latent_dim, device=device, num_images=1): | |
generator.eval() | |
with torch.no_grad(): | |
noise = torch.randn(num_images, latent_dim, 1, 1, device=device) | |
fake_images = generator(noise) | |
fake_images = fake_images * 0.5 + 0.5 | |
return fake_images.detach().cpu() | |
def inference_interface(latent_dim=latent_dim, device=device): | |
# Create model and load weights | |
generator = Generator(latent_dim=latent_dim) | |
generator = nn.DataParallel(generator) | |
generator.load_state_dict(torch.load("generator_final.pth", map_location=device)) | |
if isinstance(generator, nn.DataParallel): | |
generator = generator.module | |
generator.to(device) | |
def generate(num_images): | |
fake_images = generate_artwork(generator, latent_dim=latent_dim, device=device, num_images=num_images) | |
images = [transforms.ToPILImage()(img) for img in fake_images] | |
upscaled_images = [img.resize((256, 256), resample=Image.LANCZOS) for img in images] | |
return upscaled_images | |
demo = gr.Interface( | |
fn=generate, | |
inputs=gr.Slider(minimum=1, maximum=9, step=1, default=1, label="Number of Images"), | |
outputs=gr.Gallery(label="Generated Artwork").style(grid=[3], height="auto"), | |
title="Art Generation with GAN", | |
description="Generate artwork using a trained GAN model." | |
) | |
return demo | |
# The key part: launch the Gradio interface when app.py is run | |
if __name__ == "__main__": | |
demo = inference_interface() | |
demo.launch() | |