File size: 7,995 Bytes
b53b6d3
 
4175bb8
b53b6d3
 
 
 
 
 
7943976
 
 
2b06c57
 
 
 
029ea87
a12be6f
7943976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
521227f
 
 
e9be013
 
521227f
 
 
e9be013
 
521227f
 
 
e9be013
 
521227f
 
 
e9be013
 
521227f
e9be013
521227f
 
 
e9be013
 
521227f
 
 
e9be013
521227f
 
 
e9be013
521227f
 
 
e9be013
521227f
 
 
e9be013
521227f
 
 
 
 
 
e9be013
521227f
4175bb8
521227f
e9be013
4175bb8
f746c21
 
b53b6d3
521227f
 
b53b6d3
 
 
 
 
521227f
b53b6d3
 
 
 
521227f
b53b6d3
 
2b06c57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a2fbf3
 
 
2b06c57
6461af3
7943976
 
 
2b06c57
 
0a2fbf3
2b06c57
 
6461af3
2b06c57
7943976
 
 
2b06c57
 
0a2fbf3
7943976
 
 
 
0a2fbf3
2b06c57
0a2fbf3
 
2b06c57
 
 
0a2fbf3
 
 
2b06c57
0a2fbf3
2b06c57
f746c21
2b06c57
f746c21
2b06c57
 
 
 
7943976
0a2fbf3
 
 
 
7943976
0a2fbf3
f6c66e9
 
7943976
0a2fbf3
b53b6d3
0a2fbf3
 
b53b6d3
f746c21
 
 
b53b6d3
029ea87
bc3e686
6461af3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import cv2
import numpy as np
import gradio as gr
from PIL import Image, ImageOps
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
import os
import time
import io
import base64
import torch
import cv2
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from functools import partial

class Net2(nn.Module):
    def __init__(self):
        super(Net2, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(64)
        self.pool1 = nn.MaxPool2d(2, 2)
        self.dropout1 = nn.Dropout(0.25)

        self.conv2 = nn.Conv2d(64, 64, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(64)
        self.pool2 = nn.MaxPool2d(2, 2)
        self.dropout2 = nn.Dropout(0.25)

        self.conv3 = nn.Conv2d(64, 64, 3, padding=1)
        self.bn3 = nn.BatchNorm2d(64)
        self.pool3 = nn.MaxPool2d(2, 2)
        self.dropout3 = nn.Dropout(0.25)

        self.conv4 = nn.Conv2d(64, 64, 3, padding=1)
        self.bn4 = nn.BatchNorm2d(64)
        self.pool4 = nn.MaxPool2d(2, 2)
        self.dropout4 = nn.Dropout(0.25)

        self.flatten = nn.Flatten()

        self.fc1 = nn.Linear(64 * 5 * 5, 200)
        self.fc2 = nn.Linear(200, 150)
        self.fc3 = nn.Linear(150, 2)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = self.pool1(x)
        x = self.dropout1(x)

        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool2(x)
        x = self.dropout2(x)

        x = F.relu(self.bn3(self.conv3(x)))
        x = self.pool3(x)
        x = self.dropout3(x)

        x = F.relu(self.bn4(self.conv4(x)))
        x = self.pool4(x)
        x = self.dropout4(x)

        x = self.flatten(x)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.softmax(self.fc3(x), dim=1)
        return x
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 512, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(512)
        self.pool1 = nn.MaxPool2d(2, 2)
        self.dropout1 = nn.Dropout(0.25)

        self.conv2 = nn.Conv2d(512, 256, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(256)
        self.pool2 = nn.MaxPool2d(2, 2)
        self.dropout2 = nn.Dropout(0.25)

        self.conv3 = nn.Conv2d(256, 128, 3, padding=1)
        self.bn3 = nn.BatchNorm2d(128)
        self.pool3 = nn.MaxPool2d(2, 2)
        self.dropout3 = nn.Dropout(0.25)

        self.conv4 = nn.Conv2d(128, 64, 3, padding=1)
        self.bn4 = nn.BatchNorm2d(64)
        self.pool4 = nn.MaxPool2d(2, 2)
        self.dropout4 = nn.Dropout(0.20)

        self.flatten = nn.Flatten()

        self.fc1 = nn.Linear(1600, 300)
        self.fc2 = nn.Linear(300, 150)
        self.fc3 = nn.Linear(150, 2)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = self.pool1(x)
        x = self.dropout1(x)

        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool2(x)
        x = self.dropout2(x)

        x = F.relu(self.bn3(self.conv3(x)))
        x = self.pool3(x)
        x = self.dropout3(x)

        x = F.relu(self.bn4(self.conv4(x)))
        x = self.pool4(x)
        x = self.dropout4(x)

        x = self.flatten(x)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.softmax(self.fc3(x), dim=1)
        return x

model = None
model_path = "models1.pth"

# model2 = None
# model2_path = "model4.pth"

if os.path.exists(model_path):
    state_dict = torch.load(model_path, map_location=torch.device('cpu'))
    new_state_dict = {}
    for key, value in state_dict.items():
        new_key = key.replace("module.", "")
        new_state_dict[new_key] = value

    model = Net()
    model.load_state_dict(new_state_dict)
    model.eval()

else:
    print("Model file not found at", model_path)


# def process_image(input_image):
#     image = Image.fromarray(input_image).convert("RGB")
# 
#     start_time = time.time()
#     heatmap = scanmap(np.array(image), model)
#     elapsed_time = time.time() - start_time
#     heatmap_img = Image.fromarray(np.uint8(plt.cm.hot(heatmap) * 255)).convert('RGB')
# 
#     heatmap_img = heatmap_img.resize(image.size)
# 
#     return image, heatmap_img, int(elapsed_time)
# 
# 
# def scanmap(image_np, model):
#     image_np = image_np.astype(np.float32) / 255.0
# 
#     window_size = (80, 80)
#     stride = 10
# 
#     height, width, channels = image_np.shape
# 
#     probabilities_map = []
# 
#     for y in range(0, height - window_size[1] + 1, stride):
#         row_probabilities = []
#         for x in range(0, width - window_size[0] + 1, stride):
#             cropped_window = image_np[y:y + window_size[1], x:x + window_size[0]]
#             cropped_window_torch = transforms.ToTensor()(cropped_window).unsqueeze(0)
# 
#             with torch.no_grad():
#                 probabilities = model(cropped_window_torch)
# 
#             row_probabilities.append(probabilities[0, 1].item())
# 
#         probabilities_map.append(row_probabilities)
# 
#     probabilities_map = np.array(probabilities_map)
#     return probabilities_map
# 
# def gradio_process_image(input_image):
#     original, heatmap, elapsed_time = process_image(input_image)
#     return original, heatmap, f"Elapsed Time (seconds): {elapsed_time}"
# 
# inputs = gr.Image(label="Upload Image")
# outputs = [
#     gr.Image(label="Original Image"),
#     gr.Image(label="Heatmap"),
#     gr.Textbox(label="Elapsed Time")
# ]
# 
# iface = gr.Interface(fn=gradio_process_image, inputs=inputs, outputs=outputs)
# iface.launch()

def scanmap(image_path, model, device, threshold=0.5):
    satellite_image = cv2.imread(image_path)
    satellite_image = satellite_image.astype(np.float32) / 255.0

    window_size = (80, 80)
    stride = 10

    height, width, channels = satellite_image.shape


    fig, ax = plt.subplots(1)
    ax.imshow(satellite_image)

    ship_images = []

    for y in range(0, height - window_size[1] + 1, stride):
        for x in range(0, width - window_size[0] + 1, stride):
            cropped_window = satellite_image[y:y + window_size[1], x:x + window_size[0]]
            cropped_window_torch = torch.tensor(cropped_window.transpose(2, 0, 1), dtype=torch.float32).unsqueeze(0)
            cropped_window_torch = cropped_window_torch.to(device)  # move data to the same device as model

            with torch.no_grad():
                probabilities = model(cropped_window_torch)

            # if probability is greater than threshold, draw a bounding box and add to ship_images
            if probabilities[0, 1].item() > threshold:
                rect = patches.Rectangle((x, y), window_size[0], window_size[1], linewidth=1, edgecolor='r',
                                         facecolor='none')
                ax.add_patch(rect)
                ship_images.append(cropped_window)

    output_path = "output.png"
    plt.savefig(output_path)
    plt.close()

    return output_path

def process_image(input_image, model, threshold=0.5):
    start_time = time.time()
    ship_images = scanmap(input_image, model, threshold)
    elapsed_time = time.time() - start_time

    return ship_images, int(elapsed_time)


def gradio_process_image(input_image_path, model, threshold=0.5):
    start_time = time.time()
    output_image_path = scanmap(input_image_path, model, threshold)
    elapsed_time = time.time() - start_time

    output_image = Image.open(output_image_path) if output_image_path else None

    return output_image, f"Elapsed Time (seconds): {elapsed_time}"

inputs = gr.inputs.Image(label="Upload Image")
outputs = [
    gr.outputs.Image(label="Detected Ships"),
    gr.outputs.Textbox(label="Elapsed Time")
]

# Use 0.5 as the threshold, but adjust according to your needs
gradio_process_image_partial = partial(gradio_process_image, model=model, threshold=0.5)

iface = gr.Interface(fn=gradio_process_image_partial, inputs=inputs, outputs=outputs)
iface.launch()