Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import os, time, librosa, torch | |
from pyannote.audio import Pipeline | |
from transformers import pipeline | |
from utils import second_to_timecode, download_from_youtube | |
MODEL_NAME = 'bayartsogt/whisper-large-v2-mn-13' | |
lang = 'mn' | |
chunk_length_s = 9 | |
vad_activation_min_duration = 9 # sec | |
device = 0 if torch.cuda.is_available() else "cpu" | |
SAMPLE_RATE = 16_000 | |
######## LOAD MODELS FROM HUB ######## | |
dia_model = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=os.environ['TOKEN']) | |
vad_model = Pipeline.from_pretrained("pyannote/voice-activity-detection", use_auth_token=os.environ['TOKEN']) | |
pipe = pipeline(task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=chunk_length_s, device=device) | |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") | |
print("----------> Loaded models <-----------") | |
def generator(youtube_link, microphone, file_upload, num_speakers, max_duration, history): | |
if int(youtube_link != '') + int(microphone is not None) + int(file_upload is not None) != 1: | |
raise Exception(f"Only one of the source should be given youtube_link={youtube_link}, microphone={microphone}, file_upload={file_upload}") | |
history = history or "" | |
if microphone: | |
path = microphone | |
elif file_upload: | |
path = file_upload | |
elif youtube_link: | |
path = download_from_youtube(youtube_link) | |
waveform, sampling_rate = librosa.load(path, sr=SAMPLE_RATE, mono=True, duration=max_duration) | |
print(waveform.shape, sampling_rate) | |
waveform_tensor = torch.unsqueeze(torch.tensor(waveform), 0).to(device) | |
dia_result = dia_model({ | |
"waveform": waveform_tensor, | |
"sample_rate": sampling_rate, | |
}, num_speakers=num_speakers) | |
counter = 1 | |
for speech_turn, track, speaker in dia_result.itertracks(yield_label=True): | |
print(f"{speech_turn.start:4.1f} {speech_turn.end:4.1f} {speaker}") | |
_start = int(sampling_rate * speech_turn.start) | |
_end = int(sampling_rate * speech_turn.end) | |
data = waveform[_start: _end] | |
if speech_turn.end - speech_turn.start > vad_activation_min_duration: | |
print(f'audio duration {speech_turn.end - speech_turn.start} sec ----> activating VAD') | |
vad_output = vad_model({ | |
'waveform': waveform_tensor[:, _start:_end], | |
'sample_rate': sampling_rate}) | |
for vad_turn in vad_output.get_timeline().support(): | |
vad_start = _start + int(sampling_rate * vad_turn.start) | |
vad_end = _start + int(sampling_rate * vad_turn.end) | |
prediction = pipe(waveform[vad_start: vad_end])['text'] | |
history += f"{counter}\n" + \ | |
f"{second_to_timecode(speech_turn.start + vad_turn.start)} --> {second_to_timecode(speech_turn.start + vad_turn.end)}\n" + \ | |
f"{prediction}\n\n" | |
# f">> {speaker}: {prediction}\n\n" | |
yield history, history, None | |
counter += 1 | |
else: | |
prediction = pipe(data)['text'] | |
history += f"{counter}\n" + \ | |
f"{second_to_timecode(speech_turn.start)} --> {second_to_timecode(speech_turn.end)}\n" + \ | |
f"{prediction}\n\n" | |
# f">> {speaker}: {prediction}\n\n" | |
counter += 1 | |
yield history, history, None | |
# https://support.google.com/youtube/answer/2734698?hl=en#zippy=%2Cbasic-file-formats%2Csubrip-srt-example%2Csubviewer-sbv-example | |
file_name = 'transcript.srt' | |
with open(file_name, 'w') as fp: | |
fp.write(history) | |
yield history, history, file_name | |
demo = gr.Interface( | |
generator, | |
inputs=[ | |
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL", optional=True), | |
gr.inputs.Audio(source="microphone", type="filepath", optional=True), | |
gr.inputs.Audio(source="upload", type="filepath", optional=True), | |
gr.Number(value=1, label="Number of Speakers"), | |
gr.Number(value=120, label="Maximum Duration (Seconds)"), | |
'state', | |
], | |
outputs=['text', 'state', 'file'], | |
layout="horizontal", | |
theme="huggingface", | |
title="Transcribe Mongolian Whisper π²π³", | |
description=( | |
"Transcribe Youtube Video / Microphone / Uploaded File in Mongolian Whisper Model." + \ | |
" | You can upload SubRip file (`.srt`) [to your youtube video](https://support.google.com/youtube/answer/2734698?hl=en#zippy=%2Cbasic-file-formats)." + \ | |
" | Please REFRESH π the page after you transcribed!" + \ | |
" | π¦ [@_tsogoo_](https://twitter.com/_tsogoo_)" + \ | |
" | π€ [@bayartsogt](https://huggingface.co/bayartsogt)" + \ | |
"" | |
), | |
allow_flagging="never", | |
) | |
# define queue - required for generators | |
demo.queue() | |
demo.launch() |