|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class DoubleConv(nn.Module): |
|
"""(convolution => [BN] => ReLU) * 2""" |
|
|
|
def __init__(self, in_channels, out_channels, mid_channels=None): |
|
super().__init__() |
|
if not mid_channels: |
|
mid_channels = out_channels |
|
self.double_conv = nn.Sequential( |
|
nn.Conv1d(in_channels, mid_channels, kernel_size=3, padding=1), |
|
nn.GroupNorm(num_groups=4, num_channels=mid_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv1d(mid_channels, out_channels, kernel_size=3, padding=1), |
|
nn.GroupNorm(num_groups=4, num_channels=out_channels), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
def forward(self, x): |
|
return self.double_conv(x) |
|
|
|
|
|
class DoubleConvX(nn.Module): |
|
"""(convolution => [BN] => ReLU) * 2""" |
|
|
|
def __init__(self, in_channels, out_channels, mid_channels=None): |
|
super().__init__() |
|
if not mid_channels: |
|
mid_channels = out_channels |
|
self.double_conv = nn.Sequential( |
|
nn.Conv1d(in_channels, mid_channels, kernel_size=15, padding=7), |
|
nn.GroupNorm(num_groups=8, num_channels=mid_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv1d(mid_channels, out_channels, kernel_size=15, padding=7), |
|
nn.GroupNorm(num_groups=8, num_channels=out_channels), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
def forward(self, x): |
|
return self.double_conv(x) |
|
|
|
|
|
class Down(nn.Module): |
|
"""Downscaling with maxpool then double conv""" |
|
|
|
def __init__(self, in_channels, out_channels): |
|
super().__init__() |
|
self.maxpool_conv = nn.Sequential( |
|
nn.MaxPool1d(2), DoubleConv(in_channels, out_channels) |
|
) |
|
|
|
def forward(self, x): |
|
return self.maxpool_conv(x) |
|
|
|
|
|
class Up(nn.Module): |
|
"""Upscaling then double conv""" |
|
|
|
def __init__(self, in_channels, out_channels): |
|
super().__init__() |
|
|
|
self.up = nn.Upsample(scale_factor=2, mode="linear", align_corners=True) |
|
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2) |
|
|
|
def forward(self, x1, x2): |
|
x1 = self.up(x1) |
|
|
|
diffX = x2.size()[2] - x1.size()[2] |
|
|
|
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2]) |
|
|
|
|
|
|
|
x = torch.cat([x2, x1], dim=1) |
|
return self.conv(x) |
|
|
|
|
|
class OutConv(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(OutConv, self).__init__() |
|
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size=1) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class UNet1d(nn.Module): |
|
def __init__(self, n_channels, n_classes, nfilter=24): |
|
super(UNet1d, self).__init__() |
|
self.n_channels = n_channels |
|
self.n_classes = n_classes |
|
|
|
self.inc = DoubleConv(n_channels, nfilter) |
|
self.down1 = Down(nfilter, nfilter * 2) |
|
self.down2 = Down(nfilter * 2, nfilter * 4) |
|
self.down3 = Down(nfilter * 4, nfilter * 8) |
|
self.down4 = Down(nfilter * 8, nfilter * 8) |
|
self.up1 = Up(nfilter * 16, nfilter * 4) |
|
self.up2 = Up(nfilter * 8, nfilter * 2) |
|
self.up3 = Up(nfilter * 4, nfilter * 1) |
|
self.up4 = Up(nfilter * 2, nfilter) |
|
self.outc = OutConv(nfilter, n_classes) |
|
|
|
def forward(self, x): |
|
x1 = self.inc(x) |
|
x2 = self.down1(x1) |
|
x3 = self.down2(x2) |
|
x4 = self.down3(x3) |
|
x5 = self.down4(x4) |
|
x = self.up1(x5, x4) |
|
x = self.up2(x, x3) |
|
x = self.up3(x, x2) |
|
x = self.up4(x, x1) |
|
logits = self.outc(x) |
|
return logits |
|
|
|
|
|
if __name__ == "__main__": |
|
model = UNet1d(1, 1) |
|
print(model) |
|
|