File size: 5,845 Bytes
42090ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
898eb24
 
 
 
42090ad
 
 
 
 
 
 
 
 
 
 
 
 
 
898eb24
 
 
 
42090ad
 
 
 
 
 
898eb24
 
 
42090ad
898eb24
 
42090ad
898eb24
 
 
 
 
42090ad
898eb24
42090ad
 
 
 
 
898eb24
42090ad
 
 
 
 
 
 
 
 
 
898eb24
 
 
 
 
 
 
 
42090ad
 
 
 
898eb24
42090ad
 
 
 
 
 
 
 
898eb24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42090ad
898eb24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import re
import string
import collections
from typing import Callable
import evaluate
import datasets


# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

_DESCRIPTION = """\
Question-answering metrics (`Exact Match` and `F1`) for Musique-Answerable dataset. 

The implementation is taken from Musique repository.
https://github.com/StonyBrookNLP/musique
"""


_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predicted answers.
    references: list of ground truth answers. Each reference should be a list of 
        ground truth answers for the corresponding prediction.
Returns:
    exact_match: Exact match score,
    f1: F1 score over tokens
Examples:
    >>> my_new_module = evaluate.load("musique")
    >>> results = my_new_module.compute(
        references=[["New York City", "NYC"], ["Einstein", "Albert Einstein"]], 
        predictions=["New York City", "Albert Einstein"],
    )
    >>> print(results)
    {'exact_match': 1.0, 'f1': 1.0}
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class musique(evaluate.Metric):
    """TODO: Question answering metrics (EM and F1) for Musique-Answerable dataset."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features(
                {
                    "predictions": datasets.features.Sequence(datasets.Value("string")),
                    "references": datasets.features.Sequence(
                        datasets.features.Sequence(datasets.Value("string"))
                    ),
                }
            ),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"],
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        pass

    def _compute(self, predictions, references):
        """Returns the scores"""

        if len(predictions) != len(references):
            raise ValueError(
                "The number of predictions and references should be the same."
            )

        if len(predictions) == 0:
            return {"exact_match": 0.0, "f1": 0.0}

        exact_scores = [
            metric_max_over_ground_truths(compute_exact, prediction, reference)
            for prediction, reference in zip(predictions, references)
        ]
        f1_scores = [
            metric_max_over_ground_truths(compute_f1, prediction, reference)
            for prediction, reference in zip(predictions, references)
        ]
        return {
            "exact_match": sum(exact_scores) / len(exact_scores),
            "f1": sum(f1_scores) / len(f1_scores),
        }


# Source: https://github.com/StonyBrookNLP/musique/blob/main/metrics/answer.py


def normalize_answer(s):
    """Lower text and remove punctuation, articles and extra whitespace."""

    def remove_articles(text):
        regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
        return re.sub(regex, " ", text)

    def white_space_fix(text):
        return " ".join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return "".join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(s))))


def get_tokens(s):
    if not s:
        return []
    return normalize_answer(s).split()


def compute_exact(a_gold, a_pred):
    return int(normalize_answer(a_gold) == normalize_answer(a_pred))


def compute_f1(a_gold, a_pred):
    gold_toks = get_tokens(a_gold)
    pred_toks = get_tokens(a_pred)
    common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
    num_same = sum(common.values())
    if len(gold_toks) == 0 or len(pred_toks) == 0:
        # If either is no-answer, then F1 is 1 if they agree, 0 otherwise
        return int(gold_toks == pred_toks)
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(pred_toks)
    recall = 1.0 * num_same / len(gold_toks)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


def metric_max_over_ground_truths(
    metric_fn: Callable[[str, str], float],
    prediction: str,
    ground_truths: list[str],
) -> float:
    scores_for_ground_truths = [
        metric_fn(prediction, ground_truth) for ground_truth in ground_truths
    ]
    return max(scores_for_ground_truths)