File size: 5,845 Bytes
42090ad 898eb24 42090ad 898eb24 42090ad 898eb24 42090ad 898eb24 42090ad 898eb24 42090ad 898eb24 42090ad 898eb24 42090ad 898eb24 42090ad 898eb24 42090ad 898eb24 42090ad 898eb24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import re
import string
import collections
from typing import Callable
import evaluate
import datasets
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
_DESCRIPTION = """\
Question-answering metrics (`Exact Match` and `F1`) for Musique-Answerable dataset.
The implementation is taken from Musique repository.
https://github.com/StonyBrookNLP/musique
"""
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predicted answers.
references: list of ground truth answers. Each reference should be a list of
ground truth answers for the corresponding prediction.
Returns:
exact_match: Exact match score,
f1: F1 score over tokens
Examples:
>>> my_new_module = evaluate.load("musique")
>>> results = my_new_module.compute(
references=[["New York City", "NYC"], ["Einstein", "Albert Einstein"]],
predictions=["New York City", "Albert Einstein"],
)
>>> print(results)
{'exact_match': 1.0, 'f1': 1.0}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class musique(evaluate.Metric):
"""TODO: Question answering metrics (EM and F1) for Musique-Answerable dataset."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features(
{
"predictions": datasets.features.Sequence(datasets.Value("string")),
"references": datasets.features.Sequence(
datasets.features.Sequence(datasets.Value("string"))
),
}
),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"],
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
pass
def _compute(self, predictions, references):
"""Returns the scores"""
if len(predictions) != len(references):
raise ValueError(
"The number of predictions and references should be the same."
)
if len(predictions) == 0:
return {"exact_match": 0.0, "f1": 0.0}
exact_scores = [
metric_max_over_ground_truths(compute_exact, prediction, reference)
for prediction, reference in zip(predictions, references)
]
f1_scores = [
metric_max_over_ground_truths(compute_f1, prediction, reference)
for prediction, reference in zip(predictions, references)
]
return {
"exact_match": sum(exact_scores) / len(exact_scores),
"f1": sum(f1_scores) / len(f1_scores),
}
# Source: https://github.com/StonyBrookNLP/musique/blob/main/metrics/answer.py
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
return re.sub(regex, " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def get_tokens(s):
if not s:
return []
return normalize_answer(s).split()
def compute_exact(a_gold, a_pred):
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
def compute_f1(a_gold, a_pred):
gold_toks = get_tokens(a_gold)
pred_toks = get_tokens(a_pred)
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def metric_max_over_ground_truths(
metric_fn: Callable[[str, str], float],
prediction: str,
ground_truths: list[str],
) -> float:
scores_for_ground_truths = [
metric_fn(prediction, ground_truth) for ground_truth in ground_truths
]
return max(scores_for_ground_truths)
|