Spaces:
Sleeping
Sleeping
# %% ModelTester.ipynb 1 | |
from fastai.vision.all import * | |
import gradio as gr | |
# needed when model was saved/ported on windows | |
import platform | |
import pathlib | |
# %% ModelTester.ipynb 3 | |
from fastai.metrics import Metric | |
class OrdinalRegressionMetric(Metric): | |
def __init__(self): | |
super().__init__() | |
self.total = 0 | |
self.count = 0 | |
def accumulate(self, learn): | |
# Get predictions and targets | |
preds, targs = learn.pred, learn.y | |
# Your custom logic to convert predictions and targets to numeric values | |
preds_numeric = torch.argmax(preds, dim=1) | |
targs_numeric = targs | |
#print("preds_numeric: ",preds_numeric) | |
#print("targs_numeric: ",targs_numeric) | |
# Calculate the metric (modify this based on your specific needs) | |
squared_diff = torch.sum(torch.sqrt((preds_numeric - targs_numeric)**2)) | |
# Normalize by the maximum possible difference | |
max_diff = torch.sqrt((torch.max(targs_numeric) - torch.min(targs_numeric))**2) | |
#print("squared_diff: ",squared_diff) | |
#print("max_diff: ",max_diff) | |
# Update the metric value | |
self.total += squared_diff | |
#print("self.total: ",self.total) | |
self.count += max_diff | |
#print("self.count: ",self.count) | |
def value(self): | |
if self.count == 0: | |
return 0.0 # or handle this case appropriately | |
#print("self.total / self.count: ", (self.total / self.count)) | |
# Calculate the normalized metric value | |
metric_value = 1/(self.total / self.count) | |
return metric_value | |
# %% ModelTester.ipynb 4 | |
plt = platform.system() | |
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath | |
learn = load_learner("newmodel.pk1") | |
# %% ModelTester.ipynb 6 | |
categories = ("1","1-2","2","2-3","3","3-4","4","4-5","5") | |
def classify_image(img): | |
pred, idx, probs = learn.predict(img) | |
return dict(zip(categories, map(float, probs))) | |
# %% ModelTester.ipynb 8 | |
intf = gr.Interface(fn=classify_image, inputs='image', outputs='label') | |
intf.launch(inline=False) | |