Spaces:
Running
Running
Delete public-apps/80s_music.livemd
Browse files- public-apps/80s_music.livemd +0 -207
public-apps/80s_music.livemd
DELETED
@@ -1,207 +0,0 @@
|
|
1 |
-
<!-- livebook:{"app_settings":{"access_type":"private","output_type":"rich","slug":"80s-music"},"file_entries":[{"file":{"file_system_id":"local","file_system_type":"local","path":"80s_detailed.csv"},"name":"80s_detailed.csv","type":"file"}],"persist_outputs":true} -->
|
2 |
-
|
3 |
-
# 1980s Music Sentiment
|
4 |
-
|
5 |
-
```elixir
|
6 |
-
Mix.install(
|
7 |
-
[
|
8 |
-
{:bumblebee, "~> 0.4.2"},
|
9 |
-
{:nx, "~> 0.6.1"},
|
10 |
-
{:exla, "~> 0.6.1"},
|
11 |
-
{:axon, "~> 0.6.0"},
|
12 |
-
{:kino, "~> 0.12.3"},
|
13 |
-
{:kino_explorer, "~> 0.1.18"},
|
14 |
-
{:kino_vega_lite, "~> 0.1.10"}
|
15 |
-
],
|
16 |
-
config: [nx: [default_backend: EXLA.Backend]]
|
17 |
-
)
|
18 |
-
|
19 |
-
Nx.global_default_backend(EXLA.Backend)
|
20 |
-
```
|
21 |
-
|
22 |
-
## Introduction
|
23 |
-
|
24 |
-
Music of the 80s came in many flavours; rock, pop, punk, synth. In this livebook we will delve into the feelings that many of these songs evoke. To our help we have [Hugging Face](https://huggingface.co/) and its library of open source ML models.
|
25 |
-
|
26 |
-
The model we will use here is a derivative of `roberta` called [`roberta-base-go_emotions`](https://huggingface.co/SamLowe/roberta-base-go_emotions?text=White+man+came+across+the+sea%2C+He+brought+us+pain+and+misery.+He+killed+our+tribes+killed+our+creed%2C+He+took+our+game+for+his+own+need). This model comes with 28 emotion labels. We will be able to use it via [Bumblebee Text Classification](https://hexdocs.pm/bumblebee/Bumblebee.Text.html#text_classification/3).
|
27 |
-
|
28 |
-
The idea is to pass a 1980's lyric into the model and get a classification back from it.
|
29 |
-
|
30 |
-
## Load models
|
31 |
-
|
32 |
-
```elixir
|
33 |
-
{:ok, emotions} = Bumblebee.load_model({:hf, "SamLowe/roberta-base-go_emotions"})
|
34 |
-
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "SamLowe/roberta-base-go_emotions"})
|
35 |
-
|
36 |
-
:ok
|
37 |
-
```
|
38 |
-
|
39 |
-
<!-- livebook:{"output":true} -->
|
40 |
-
|
41 |
-
```
|
42 |
-
|
43 |
-
07:59:01.614 [info] TfrtCpuClient created.
|
44 |
-
|
45 |
-
```
|
46 |
-
|
47 |
-
<!-- livebook:{"output":true} -->
|
48 |
-
|
49 |
-
```
|
50 |
-
:ok
|
51 |
-
```
|
52 |
-
|
53 |
-
With the emotion sentiment model loaded, lets get some lyrics to analyze.
|
54 |
-
|
55 |
-
```elixir
|
56 |
-
text_input =
|
57 |
-
Kino.Input.textarea("Text",
|
58 |
-
default:
|
59 |
-
"White man came across the sea, He brought us pain and misery. He killed our tribes killed our creed, He took our game for his own need"
|
60 |
-
)
|
61 |
-
```
|
62 |
-
|
63 |
-
```elixir
|
64 |
-
text = Kino.Input.read(text_input)
|
65 |
-
serving = Bumblebee.Text.text_classification(emotions, tokenizer)
|
66 |
-
Nx.Serving.run(serving, text)
|
67 |
-
```
|
68 |
-
|
69 |
-
<!-- livebook:{"output":true} -->
|
70 |
-
|
71 |
-
```
|
72 |
-
%{
|
73 |
-
predictions: [
|
74 |
-
%{label: "neutral", score: 0.31277623772621155},
|
75 |
-
%{label: "optimism", score: 0.23790912330150604},
|
76 |
-
%{label: "caring", score: 0.2258605808019638},
|
77 |
-
%{label: "approval", score: 0.11500591784715652},
|
78 |
-
%{label: "desire", score: 0.030266664922237396}
|
79 |
-
]
|
80 |
-
}
|
81 |
-
```
|
82 |
-
|
83 |
-
### Load and parse a file
|
84 |
-
|
85 |
-
We have an attachment to this Livebook: `80s_detailed.csv`. We import it with Kino and use Kino Explorer to parse the csv into a dataframe, `df`.
|
86 |
-
|
87 |
-
```elixir
|
88 |
-
df =
|
89 |
-
Kino.FS.file_path("80s_detailed.csv")
|
90 |
-
|> Explorer.DataFrame.from_csv!()
|
91 |
-
```
|
92 |
-
|
93 |
-
```elixir
|
94 |
-
analysis = fn lyric ->
|
95 |
-
%{predictions: [%{label: label} | _tail]} = Nx.Serving.run(serving, lyric)
|
96 |
-
label
|
97 |
-
end
|
98 |
-
|
99 |
-
size = Explorer.Series.size(df["lyrics"])
|
100 |
-
|
101 |
-
lyrics_list = Explorer.Series.to_list(df["lyrics"])
|
102 |
-
|
103 |
-
take_num = 10
|
104 |
-
# last_songs = lyrics_list |> Enum.slice(-take_num..-1)
|
105 |
-
|
106 |
-
analysed_list_0_10 =
|
107 |
-
lyrics_list
|
108 |
-
|> Enum.take(take_num)
|
109 |
-
|> Enum.map(fn lyric -> analysis.(lyric) end)
|
110 |
-
|
111 |
-
# |> Enum.take(take_num)
|
112 |
-
|
113 |
-
# dummy_values =
|
114 |
-
# 1..(size - take_num)
|
115 |
-
# |> Enum.map(fn _ -> nil end)
|
116 |
-
|
117 |
-
# list = dummy_values ++ analysed_list
|
118 |
-
|
119 |
-
# updated_list = Explorer.DataFrame.put(
|
120 |
-
# df,
|
121 |
-
# :emotion,
|
122 |
-
# Explorer.Series.from_list(list)
|
123 |
-
# )
|
124 |
-
```
|
125 |
-
|
126 |
-
<!-- livebook:{"output":true} -->
|
127 |
-
|
128 |
-
```
|
129 |
-
["love", "desire", "neutral", "love", "neutral", "neutral", "neutral", "neutral", "curiosity",
|
130 |
-
"neutral"]
|
131 |
-
```
|
132 |
-
|
133 |
-
```elixir
|
134 |
-
analysed_list_121_130 =
|
135 |
-
lyrics_list
|
136 |
-
|> Enum.slice(121..130)
|
137 |
-
|> Enum.map(fn lyric -> analysis.(lyric) end)
|
138 |
-
```
|
139 |
-
|
140 |
-
```elixir
|
141 |
-
analysed_list_11_30 =
|
142 |
-
lyrics_list
|
143 |
-
|> Enum.slice(11..30)
|
144 |
-
|> Enum.map(fn lyric -> analysis.(lyric) end)
|
145 |
-
```
|
146 |
-
|
147 |
-
<!-- livebook:{"output":true} -->
|
148 |
-
|
149 |
-
```
|
150 |
-
["love", "neutral", "love", "love", "love", "disapproval", "joy", "neutral", "love", "love",
|
151 |
-
"neutral", "love", "neutral", "neutral", "love", "love", "desire", "love", "approval", "neutral"]
|
152 |
-
```
|
153 |
-
|
154 |
-
```elixir
|
155 |
-
analysed_list_31_60 =
|
156 |
-
lyrics_list
|
157 |
-
|> Enum.slice(31..60)
|
158 |
-
|> Enum.map(fn lyric -> analysis.(lyric) end)
|
159 |
-
```
|
160 |
-
|
161 |
-
<!-- livebook:{"output":true} -->
|
162 |
-
|
163 |
-
```
|
164 |
-
["neutral", "disapproval", "neutral", "love", "love", "neutral", "love", "neutral", "love", "love",
|
165 |
-
"neutral", "curiosity", "love", "neutral", "admiration", "neutral", "neutral", "neutral", "love",
|
166 |
-
"neutral", "neutral", "neutral", "neutral", "neutral", "neutral", "neutral", "neutral", "neutral",
|
167 |
-
"fear", "neutral"]
|
168 |
-
```
|
169 |
-
|
170 |
-
```elixir
|
171 |
-
analysed_list_61_90 =
|
172 |
-
lyrics_list
|
173 |
-
|> Enum.slice(61..90)
|
174 |
-
|> Enum.map(fn lyric -> analysis.(lyric) end)
|
175 |
-
```
|
176 |
-
|
177 |
-
<!-- livebook:{"output":true} -->
|
178 |
-
|
179 |
-
```
|
180 |
-
["joy", "neutral", "neutral", "love", "neutral", "neutral", "sadness", "love", "love", "neutral",
|
181 |
-
"neutral", "neutral", "amusement", "confusion", "sadness", "neutral", "love", "excitement",
|
182 |
-
"neutral", "neutral", "love", "desire", "neutral", "disappointment", "desire", "approval", "love",
|
183 |
-
"neutral", "love", "sadness"]
|
184 |
-
```
|
185 |
-
|
186 |
-
```elixir
|
187 |
-
analysed_list_91_120 =
|
188 |
-
lyrics_list
|
189 |
-
|> Enum.slice(91..120)
|
190 |
-
|> Enum.map(fn lyric -> analysis.(lyric) end)
|
191 |
-
```
|
192 |
-
|
193 |
-
<!-- livebook:{"output":true} -->
|
194 |
-
|
195 |
-
```
|
196 |
-
["love", "joy", "neutral", "neutral", "love", "love", "neutral", "neutral", "love", "neutral",
|
197 |
-
"love", "neutral", "neutral", "neutral", "neutral", "love", "neutral", "neutral", "love",
|
198 |
-
"neutral", "disapproval", "neutral", "neutral", "desire", "neutral", "neutral", "love", "optimism",
|
199 |
-
"desire", "love"]
|
200 |
-
```
|
201 |
-
|
202 |
-
```elixir
|
203 |
-
analysed_list_131_150 =
|
204 |
-
lyrics_list
|
205 |
-
|> Enum.slice(131..150)
|
206 |
-
|> Enum.map(fn lyric -> analysis.(lyric) end)
|
207 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|