File size: 10,597 Bytes
b1de9b2
a444494
 
 
 
 
 
c8d430c
 
b1de9b2
c8d430c
 
b1de9b2
 
 
 
 
 
c8d430c
 
 
 
 
 
a444494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1de9b2
a444494
 
 
 
 
 
 
 
b1de9b2
a444494
 
 
 
 
 
 
 
 
c8d430c
 
 
 
b1de9b2
 
 
 
 
 
 
c8d430c
 
 
 
 
 
 
a444494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1de9b2
 
 
 
a444494
b1de9b2
 
 
 
 
 
 
 
a444494
b1de9b2
 
 
 
 
 
 
a444494
b1de9b2
 
 
 
a444494
b1de9b2
 
a444494
 
b1de9b2
 
 
 
 
a444494
b1de9b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a444494
c8d430c
a444494
c8d430c
 
 
 
b1de9b2
 
 
 
 
 
 
 
c8d430c
 
 
 
 
 
 
b1de9b2
 
 
 
a444494
 
 
c8d430c
 
 
 
 
 
a444494
 
 
 
 
 
b1de9b2
a444494
 
 
 
 
 
c8d430c
a444494
c8d430c
 
 
a444494
 
 
b1de9b2
a444494
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel
from typing import List, Optional, Dict
import gradio as gr
import json
from enum import Enum
import re
import os
import time
import gc
from huggingface_hub import hf_hub_download

# Environment variables for configuration
MODEL_REPO_ID = os.getenv("MODEL_REPO_ID", "mradermacher/Llama3-Med42-8B-GGUF")
MODEL_FILENAME = os.getenv("MODEL_FILENAME", "Llama3-Med42-8B.Q4_K_M.gguf")
N_THREADS = int(os.getenv("N_THREADS", "4"))

# Import llama_cpp with error handling for better debugging
try:
    from llama_cpp import Llama
    LLAMA_IMPORT_ERROR = None
except Exception as e:
    LLAMA_IMPORT_ERROR = str(e)
    print(f"Warning: Failed to import llama_cpp: {e}")

class ConsultationState(Enum):
    INITIAL = "initial"
    GATHERING_INFO = "gathering_info"
    DIAGNOSIS = "diagnosis"

class Message(BaseModel):
    role: str
    content: str

class ChatRequest(BaseModel):
    messages: List[Message]

class ChatResponse(BaseModel):
    response: str
    finished: bool

# Standard health assessment questions for thorough patient evaluation
HEALTH_ASSESSMENT_QUESTIONS = [
    "What are your current symptoms and how long have you been experiencing them?",
    "Do you have any pre-existing medical conditions or chronic illnesses?",
    "Are you currently taking any medications? If yes, please list them.",
    "Is there any relevant family medical history I should know about?",
    "Have you had any similar symptoms in the past? If yes, what treatments worked?"
]

# Define the AI assistant's identity and role
NURSE_OGE_IDENTITY = """
You are Nurse Oge, a medical AI assistant focused on serving patients in Nigeria. Always be empathetic, 
professional, and thorough in your assessments. When asked about your identity, explain that you are 
Nurse Oge, a medical AI assistant serving Nigerian communities. Remember that you must gather complete 
health information before providing any medical advice.
"""

class NurseOgeAssistant:
    def __init__(self):
        if LLAMA_IMPORT_ERROR:
            raise ImportError(f"Cannot initialize NurseOgeAssistant due to llama_cpp import error: {LLAMA_IMPORT_ERROR}")
            
        try:
            # Initialize the model using from_pretrained for better compatibility with free tier
            self.llm = Llama.from_pretrained(
                repo_id=MODEL_REPO_ID,
                filename=MODEL_FILENAME,
                n_ctx=2048,      # Context window size
                n_threads=N_THREADS,  # Adjust based on available CPU resources
                n_gpu_layers=0   # CPU-only inference for free tier
            )
            
        except Exception as e:
            raise RuntimeError(f"Failed to initialize the model: {str(e)}")
            
        self.consultation_states = {}
        self.gathered_info = {}

    def _is_identity_question(self, message: str) -> bool:
        identity_patterns = [
            r"who are you",
            r"what are you",
            r"your name",
            r"what should I call you",
            r"tell me about yourself"
        ]
        return any(re.search(pattern, message.lower()) for pattern in identity_patterns)

    def _is_location_question(self, message: str) -> bool:
        location_patterns = [
            r"where are you",
            r"which country",
            r"your location",
            r"where do you work",
            r"where are you based"
        ]
        return any(re.search(pattern, message.lower()) for pattern in location_patterns)

    def _get_next_assessment_question(self, conversation_id: str) -> Optional[str]:
        if conversation_id not in self.gathered_info:
            self.gathered_info[conversation_id] = []
        
        questions_asked = len(self.gathered_info[conversation_id])
        if questions_asked < len(HEALTH_ASSESSMENT_QUESTIONS):
            return HEALTH_ASSESSMENT_QUESTIONS[questions_asked]
        return None

    async def process_message(self, conversation_id: str, message: str, history: List[Dict]) -> ChatResponse:
        try:
            # Initialize state for new conversations
            if conversation_id not in self.consultation_states:
                self.consultation_states[conversation_id] = ConsultationState.INITIAL

            # Handle identity questions
            if self._is_identity_question(message):
                return ChatResponse(
                    response="I am Nurse Oge, a medical AI assistant dedicated to helping patients in Nigeria. "
                            "I'm here to provide medical guidance while ensuring I gather all necessary health information "
                            "for accurate assessments.",
                    finished=True
                )

            # Handle location questions
            if self._is_location_question(message):
                return ChatResponse(
                    response="I am based in Nigeria and specifically trained to serve Nigerian communities, "
                            "taking into account local healthcare contexts and needs.",
                    finished=True
                )

            # Start health assessment for medical queries
            if self.consultation_states[conversation_id] == ConsultationState.INITIAL:
                self.consultation_states[conversation_id] = ConsultationState.GATHERING_INFO
                next_question = self._get_next_assessment_question(conversation_id)
                return ChatResponse(
                    response=f"Before I can provide any medical advice, I need to gather some important health information. "
                            f"{next_question}",
                    finished=False
                )

            # Continue gathering information
            if self.consultation_states[conversation_id] == ConsultationState.GATHERING_INFO:
                self.gathered_info[conversation_id].append(message)
                next_question = self._get_next_assessment_question(conversation_id)
                
                if next_question:
                    return ChatResponse(
                        response=f"Thank you for that information. {next_question}",
                        finished=False
                    )
                else:
                    self.consultation_states[conversation_id] = ConsultationState.DIAGNOSIS
                    context = "\n".join([
                        f"Q: {q}\nA: {a}" for q, a in 
                        zip(HEALTH_ASSESSMENT_QUESTIONS, self.gathered_info[conversation_id])
                    ])
                    
                    messages = [
                        {"role": "system", "content": NURSE_OGE_IDENTITY},
                        {"role": "user", "content": f"Based on the following patient information, provide a thorough assessment and recommendations:\n\n{context}\n\nOriginal query: {message}"}
                    ]
                    
                    # Implement retry logic for API calls
                    max_retries = 3
                    retry_delay = 2
                    
                    for attempt in range(max_retries):
                        try:
                            response = self.llm.create_chat_completion(
                                messages=messages,
                                max_tokens=512,  # Reduced for free tier
                                temperature=0.7
                            )
                            break
                        except Exception as e:
                            if attempt < max_retries - 1:
                                time.sleep(retry_delay)
                                continue
                            return ChatResponse(
                                response="I'm sorry, I'm experiencing some technical difficulties. Please try again in a moment.",
                                finished=True
                            )
                    
                    self.consultation_states[conversation_id] = ConsultationState.INITIAL
                    self.gathered_info[conversation_id] = []
                    
                    return ChatResponse(
                        response=response['choices'][0]['message']['content'],
                        finished=True
                    )
                    
        except Exception as e:
            return ChatResponse(
                response=f"An error occurred while processing your request. Please try again.",
                finished=True
            )

# Initialize FastAPI
app = FastAPI()

# Create a global variable for our assistant
nurse_oge = None

# Add memory management middleware
@app.middleware("http")
async def add_memory_management(request: Request, call_next):
    gc.collect()  # Force garbage collection before processing request
    response = await call_next(request)
    gc.collect()  # Clean up after request
    return response

@app.on_event("startup")
async def startup_event():
    global nurse_oge
    try:
        nurse_oge = NurseOgeAssistant()
    except Exception as e:
        print(f"Failed to initialize NurseOgeAssistant: {e}")

@app.get("/health")
async def health_check():
    return {"status": "healthy", "model_loaded": nurse_oge is not None}

@app.post("/chat")
async def chat_endpoint(request: ChatRequest):
    if nurse_oge is None:
        raise HTTPException(
            status_code=503,
            detail="The medical assistant is not available at the moment. Please try again later."
        )
    
    if not request.messages:
        raise HTTPException(status_code=400, detail="No messages provided")
    
    latest_message = request.messages[-1].content
    
    response = await nurse_oge.process_message(
        conversation_id="default",
        message=latest_message,
        history=request.messages[:-1]
    )
    
    return response

# Gradio interface
def gradio_chat(message, history):
    if nurse_oge is None:
        return "The medical assistant is not available at the moment. Please try again later."
    
    response = nurse_oge.process_message("gradio_user", message, history)
    return response.response

# Create and configure Gradio interface
demo = gr.ChatInterface(
    fn=gradio_chat,
    title="Nurse Oge",
    description="Finetuned llama 3.0 for medical diagnosis and all. This is just a demo",
    theme="soft"
)

# Mount both FastAPI and Gradio
app = gr.mount_gradio_app(app, demo, path="/gradio")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)