File size: 12,094 Bytes
b1de9b2 a444494 c8d430c b1de9b2 e53bd9c c8d430c 94dc8bb c8d430c 94dc8bb e53bd9c b1de9b2 94dc8bb b1de9b2 e53bd9c a444494 e53bd9c a444494 e53bd9c a444494 e53bd9c a444494 c8d430c e53bd9c b1de9b2 94dc8bb e53bd9c c8d430c e53bd9c c8d430c a444494 e53bd9c a444494 e53bd9c a444494 e53bd9c a444494 e53bd9c b1de9b2 a444494 b1de9b2 a444494 b1de9b2 a444494 b1de9b2 a444494 b1de9b2 a444494 b1de9b2 a444494 b1de9b2 94dc8bb b1de9b2 94dc8bb b1de9b2 e53bd9c b1de9b2 94dc8bb b1de9b2 94dc8bb b1de9b2 94dc8bb b1de9b2 a444494 e53bd9c c8d430c e53bd9c c8d430c b1de9b2 e53bd9c 94dc8bb b1de9b2 94dc8bb b1de9b2 94dc8bb b1de9b2 e53bd9c b1de9b2 a444494 94dc8bb a444494 e53bd9c c8d430c a444494 b1de9b2 a444494 94dc8bb e53bd9c c8d430c e53bd9c a444494 e53bd9c a444494 94dc8bb e53bd9c a444494 94dc8bb a444494 94dc8bb a444494 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel
from typing import List, Optional, Dict
import gradio as gr
import json
from enum import Enum
import re
import os
import time
import gc
from contextlib import asynccontextmanager
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
# Configuration variables that can be set through environment variables
# These allow for flexible deployment configuration without code changes
MODEL_REPO_ID = os.getenv("MODEL_REPO_ID", "mradermacher/Llama3-Med42-8B-GGUF")
MODEL_FILENAME = os.getenv("MODEL_FILENAME", "Llama3-Med42-8B.Q5_K_M.gguf")
N_THREADS = int(os.getenv("N_THREADS", "4"))
# Data models for API request/response handling
class ConsultationState(Enum):
INITIAL = "initial"
GATHERING_INFO = "gathering_info"
DIAGNOSIS = "diagnosis"
class Message(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
messages: List[Message]
class ChatResponse(BaseModel):
response: str
finished: bool
# Standardized health assessment questions for consistent patient evaluation
HEALTH_ASSESSMENT_QUESTIONS = [
"What are your current symptoms and how long have you been experiencing them?",
"Do you have any pre-existing medical conditions or chronic illnesses?",
"Are you currently taking any medications? If yes, please list them.",
"Is there any relevant family medical history I should know about?",
"Have you had any similar symptoms in the past? If yes, what treatments worked?"
]
# AI assistant's identity and role definition
NURSE_OGE_IDENTITY = """
You are Nurse Oge, a medical AI assistant focused on serving patients in Nigeria. Always be empathetic,
professional, and thorough in your assessments. When asked about your identity, explain that you are
Nurse Oge, a medical AI assistant serving Nigerian communities. Remember that you must gather complete
health information before providing any medical advice.
"""
class NurseOgeAssistant:
"""
Main assistant class that handles conversation management and medical consultations
"""
def __init__(self):
try:
# Initialize the Llama model using from_pretrained as per documentation
self.llm = Llama.from_pretrained(
repo_id=MODEL_REPO_ID,
filename=MODEL_FILENAME,
n_ctx=2048, # Context window size
n_threads=N_THREADS, # CPU threads to use
n_gpu_layers=0 # CPU-only inference
)
except Exception as e:
raise RuntimeError(f"Failed to initialize the model: {str(e)}")
# State management for multiple concurrent conversations
self.consultation_states = {}
self.gathered_info = {}
def _is_identity_question(self, message: str) -> bool:
"""Detect if the user is asking about the assistant's identity"""
identity_patterns = [
r"who are you",
r"what are you",
r"your name",
r"what should I call you",
r"tell me about yourself"
]
return any(re.search(pattern, message.lower()) for pattern in identity_patterns)
def _is_location_question(self, message: str) -> bool:
"""Detect if the user is asking about the assistant's location"""
location_patterns = [
r"where are you",
r"which country",
r"your location",
r"where do you work",
r"where are you based"
]
return any(re.search(pattern, message.lower()) for pattern in location_patterns)
def _get_next_assessment_question(self, conversation_id: str) -> Optional[str]:
"""Get the next health assessment question based on conversation progress"""
if conversation_id not in self.gathered_info:
self.gathered_info[conversation_id] = []
questions_asked = len(self.gathered_info[conversation_id])
if questions_asked < len(HEALTH_ASSESSMENT_QUESTIONS):
return HEALTH_ASSESSMENT_QUESTIONS[questions_asked]
return None
async def process_message(self, conversation_id: str, message: str, history: List[Dict]) -> ChatResponse:
"""
Process incoming messages and manage the conversation flow
"""
try:
# Initialize state for new conversations
if conversation_id not in self.consultation_states:
self.consultation_states[conversation_id] = ConsultationState.INITIAL
# Handle identity questions
if self._is_identity_question(message):
return ChatResponse(
response="I am Nurse Oge, a medical AI assistant dedicated to helping patients in Nigeria. "
"I'm here to provide medical guidance while ensuring I gather all necessary health information "
"for accurate assessments.",
finished=True
)
# Handle location questions
if self._is_location_question(message):
return ChatResponse(
response="I am based in Nigeria and specifically trained to serve Nigerian communities, "
"taking into account local healthcare contexts and needs.",
finished=True
)
# Start health assessment for medical queries
if self.consultation_states[conversation_id] == ConsultationState.INITIAL:
self.consultation_states[conversation_id] = ConsultationState.GATHERING_INFO
next_question = self._get_next_assessment_question(conversation_id)
return ChatResponse(
response=f"Before I can provide any medical advice, I need to gather some important health information. "
f"{next_question}",
finished=False
)
# Continue gathering information
if self.consultation_states[conversation_id] == ConsultationState.GATHERING_INFO:
self.gathered_info[conversation_id].append(message)
next_question = self._get_next_assessment_question(conversation_id)
if next_question:
return ChatResponse(
response=f"Thank you for that information. {next_question}",
finished=False
)
else:
self.consultation_states[conversation_id] = ConsultationState.DIAGNOSIS
# Prepare context from gathered information
context = "\n".join([
f"Q: {q}\nA: {a}" for q, a in
zip(HEALTH_ASSESSMENT_QUESTIONS, self.gathered_info[conversation_id])
])
# Prepare messages for the model
messages = [
{"role": "system", "content": NURSE_OGE_IDENTITY},
{"role": "user", "content": f"Based on the following patient information, provide thorough assessment, diagnosis and recommendations:\n\n{context}\n\nOriginal query: {message}"}
]
# Implement retry logic for model inference
max_retries = 3
retry_delay = 2
for attempt in range(max_retries):
try:
response = self.llm.create_chat_completion(
messages=messages,
max_tokens=512,
temperature=0.7,
top_p=0.95,
stop=["</s>"]
)
break
except Exception as e:
if attempt < max_retries - 1:
time.sleep(retry_delay)
continue
return ChatResponse(
response="I'm sorry, I'm experiencing some technical difficulties. Please try again in a moment.",
finished=True
)
# Reset conversation state
self.consultation_states[conversation_id] = ConsultationState.INITIAL
self.gathered_info[conversation_id] = []
return ChatResponse(
response=response['choices'][0]['message']['content'],
finished=True
)
except Exception as e:
return ChatResponse(
response=f"An error occurred while processing your request. Please try again.",
finished=True
)
# Define FastAPI lifespan for startup/shutdown events
@asynccontextmanager
async def lifespan(app: FastAPI):
# Initialize on startup
global nurse_oge
try:
nurse_oge = NurseOgeAssistant()
except Exception as e:
print(f"Failed to initialize NurseOgeAssistant: {e}")
yield
# Clean up on shutdown if needed
# Add cleanup code here
# Initialize FastAPI with lifespan
app = FastAPI(lifespan=lifespan)
# Add memory management middleware
@app.middleware("http")
async def add_memory_management(request: Request, call_next):
"""Middleware to help manage memory usage"""
gc.collect()
response = await call_next(request)
gc.collect()
return response
# Health check endpoint
@app.get("/health")
async def health_check():
"""Endpoint to verify service health"""
return {"status": "healthy", "model_loaded": nurse_oge is not None}
# Chat endpoint
@app.post("/chat")
async def chat_endpoint(request: ChatRequest):
"""Main chat endpoint for API interactions"""
if nurse_oge is None:
raise HTTPException(
status_code=503,
detail="The medical assistant is not available at the moment. Please try again later."
)
if not request.messages:
raise HTTPException(status_code=400, detail="No messages provided")
latest_message = request.messages[-1].content
response = await nurse_oge.process_message(
conversation_id="default",
message=latest_message,
history=request.messages[:-1]
)
return response
# Gradio chat interface function
async def gradio_chat(message, history):
"""Handler for Gradio chat interface"""
if nurse_oge is None:
return "The medical assistant is not available at the moment. Please try again later."
response = await nurse_oge.process_message("gradio_user", message, history)
return response.response
# Create and configure Gradio interface
demo = gr.ChatInterface(
fn=gradio_chat,
title="Nurse Oge - Medical Assistant",
description="""Welcome to Nurse Oge, your AI medical assistant specialized in serving Nigerian communities.
This system provides medical guidance while ensuring comprehensive health information gathering.""",
examples=[
["What are the common symptoms of malaria?"],
["I've been having headaches for the past week"],
["How can I prevent typhoid fever?"],
],
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="purple",
)
)
# Add custom CSS for better appearance
demo.css = """
.gradio-container {
font-family: 'Arial', sans-serif;
}
.chat-message {
padding: 1rem;
border-radius: 0.5rem;
margin-bottom: 0.5rem;
}
"""
# Mount both FastAPI and Gradio
app = gr.mount_gradio_app(app, demo, path="/gradio")
# Run the application
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |