Update app.py
Browse files
app.py
CHANGED
|
@@ -1,159 +1,11 @@
|
|
| 1 |
-
# import os
|
| 2 |
-
# import gradio as gr
|
| 3 |
-
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
-
# import torch
|
| 5 |
-
# from typing import List, Dict
|
| 6 |
-
# import logging
|
| 7 |
-
|
| 8 |
-
# # Set up logging to help us debug model loading and inference
|
| 9 |
-
# logging.basicConfig(level=logging.INFO)
|
| 10 |
-
# logger = logging.getLogger(__name__)
|
| 11 |
-
|
| 12 |
-
# class MedicalAssistant:
|
| 13 |
-
# def __init__(self):
|
| 14 |
-
# """Initialize the medical assistant with model and tokenizer"""
|
| 15 |
-
# try:
|
| 16 |
-
# logger.info("Starting model initialization...")
|
| 17 |
-
|
| 18 |
-
# # Model configuration - adjust these based on your available compute
|
| 19 |
-
# self.model_name = "mradermacher/Llama3-Med42-8B-GGUF"
|
| 20 |
-
# self.max_length = 1048
|
| 21 |
-
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
-
|
| 23 |
-
# logger.info(f"Using device: {self.device}")
|
| 24 |
-
|
| 25 |
-
# # Load tokenizer first - this is typically faster and can catch issues early
|
| 26 |
-
# logger.info("Loading tokenizer...")
|
| 27 |
-
# self.tokenizer = AutoTokenizer.from_pretrained(
|
| 28 |
-
# self.model_name,
|
| 29 |
-
# padding_side="left",
|
| 30 |
-
# trust_remote_code=True
|
| 31 |
-
# )
|
| 32 |
-
|
| 33 |
-
# # Set padding token if not set
|
| 34 |
-
# if self.tokenizer.pad_token is None:
|
| 35 |
-
# self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 36 |
-
|
| 37 |
-
# # Load model with memory optimizations
|
| 38 |
-
# logger.info("Loading model...")
|
| 39 |
-
# self.model = AutoModelForCausalLM.from_pretrained(
|
| 40 |
-
# self.model_name,
|
| 41 |
-
# torch_dtype=torch.float16,
|
| 42 |
-
# device_map="auto",
|
| 43 |
-
# load_in_8bit=True,
|
| 44 |
-
# trust_remote_code=True
|
| 45 |
-
# )
|
| 46 |
-
|
| 47 |
-
# logger.info("Model initialization completed successfully!")
|
| 48 |
-
|
| 49 |
-
# except Exception as e:
|
| 50 |
-
# logger.error(f"Error during initialization: {str(e)}")
|
| 51 |
-
# raise
|
| 52 |
-
|
| 53 |
-
# def generate_response(self, message: str, chat_history: List[Dict] = None) -> str:
|
| 54 |
-
# """Generate a response to the user's message"""
|
| 55 |
-
# try:
|
| 56 |
-
# # Prepare the prompt
|
| 57 |
-
# system_prompt = """You are a medical AI assistant. Respond to medical queries
|
| 58 |
-
# professionally and accurately. If you're unsure, always recommend consulting
|
| 59 |
-
# with a healthcare provider."""
|
| 60 |
-
|
| 61 |
-
# # Combine system prompt, chat history, and current message
|
| 62 |
-
# full_prompt = f"{system_prompt}\n\nUser: {message}\nAssistant:"
|
| 63 |
-
|
| 64 |
-
# # Tokenize input
|
| 65 |
-
# inputs = self.tokenizer(
|
| 66 |
-
# full_prompt,
|
| 67 |
-
# return_tensors="pt",
|
| 68 |
-
# padding=True,
|
| 69 |
-
# truncation=True,
|
| 70 |
-
# max_length=self.max_length
|
| 71 |
-
# ).to(self.device)
|
| 72 |
-
|
| 73 |
-
# # Generate response
|
| 74 |
-
# with torch.no_grad():
|
| 75 |
-
# outputs = self.model.generate(
|
| 76 |
-
# **inputs,
|
| 77 |
-
# max_new_tokens=512,
|
| 78 |
-
# do_sample=True,
|
| 79 |
-
# temperature=0.7,
|
| 80 |
-
# top_p=0.95,
|
| 81 |
-
# pad_token_id=self.tokenizer.pad_token_id,
|
| 82 |
-
# repetition_penalty=1.1
|
| 83 |
-
# )
|
| 84 |
-
|
| 85 |
-
# # Decode and clean up response
|
| 86 |
-
# response = self.tokenizer.decode(
|
| 87 |
-
# outputs[0],
|
| 88 |
-
# skip_special_tokens=True
|
| 89 |
-
# )
|
| 90 |
-
|
| 91 |
-
# # Extract just the assistant's response
|
| 92 |
-
# response = response.split("Assistant:")[-1].strip()
|
| 93 |
-
|
| 94 |
-
# return response
|
| 95 |
-
|
| 96 |
-
# except Exception as e:
|
| 97 |
-
# logger.error(f"Error during response generation: {str(e)}")
|
| 98 |
-
# return f"I apologize, but I encountered an error. Please try again."
|
| 99 |
-
|
| 100 |
-
# # Initialize the assistant
|
| 101 |
-
# assistant = None
|
| 102 |
-
|
| 103 |
-
# def initialize_assistant():
|
| 104 |
-
# """Initialize the assistant and handle any errors"""
|
| 105 |
-
# global assistant
|
| 106 |
-
# try:
|
| 107 |
-
# assistant = MedicalAssistant()
|
| 108 |
-
# return True
|
| 109 |
-
# except Exception as e:
|
| 110 |
-
# logger.error(f"Failed to initialize assistant: {str(e)}")
|
| 111 |
-
# return False
|
| 112 |
-
|
| 113 |
-
# def chat_response(message: str, history: List[Dict]):
|
| 114 |
-
# """Handle chat messages and return responses"""
|
| 115 |
-
# global assistant
|
| 116 |
-
|
| 117 |
-
# # Check if assistant is initialized
|
| 118 |
-
# if assistant is None:
|
| 119 |
-
# if not initialize_assistant():
|
| 120 |
-
# return "I apologize, but I'm currently unavailable. Please try again later."
|
| 121 |
-
|
| 122 |
-
# try:
|
| 123 |
-
# return assistant.generate_response(message, history)
|
| 124 |
-
# except Exception as e:
|
| 125 |
-
# logger.error(f"Error in chat response: {str(e)}")
|
| 126 |
-
# return "I encountered an error. Please try again."
|
| 127 |
-
|
| 128 |
-
# # Create Gradio interface
|
| 129 |
-
# demo = gr.ChatInterface(
|
| 130 |
-
# fn=chat_response,
|
| 131 |
-
# title="Medical Assistant (Test Version)",
|
| 132 |
-
# description="""This is a test version of the medical assistant.
|
| 133 |
-
# Please use it to verify basic functionality.""",
|
| 134 |
-
# examples=[
|
| 135 |
-
# "What are the symptoms of malaria?",
|
| 136 |
-
# "How can I prevent type 2 diabetes?",
|
| 137 |
-
# "What should I do for a mild headache?"
|
| 138 |
-
# ],
|
| 139 |
-
# # retry_btn=None,
|
| 140 |
-
# # undo_btn=None,
|
| 141 |
-
# # clear_btn="Clear"
|
| 142 |
-
# )
|
| 143 |
-
|
| 144 |
-
# # Launch the interface
|
| 145 |
-
# if __name__ == "__main__":
|
| 146 |
-
# demo.launch()
|
| 147 |
-
|
| 148 |
import os
|
| 149 |
import gradio as gr
|
| 150 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 151 |
-
import torch
|
| 152 |
from typing import List, Dict
|
| 153 |
import logging
|
| 154 |
import traceback
|
| 155 |
|
| 156 |
-
# Set up logging
|
| 157 |
logging.basicConfig(
|
| 158 |
level=logging.INFO,
|
| 159 |
format='%(asctime)s - %(levelname)s - %(message)s'
|
|
@@ -163,40 +15,39 @@ logger = logging.getLogger(__name__)
|
|
| 163 |
class MedicalAssistant:
|
| 164 |
def __init__(self):
|
| 165 |
"""
|
| 166 |
-
Initialize
|
| 167 |
-
|
| 168 |
"""
|
| 169 |
try:
|
| 170 |
-
logger.info("Starting
|
| 171 |
|
| 172 |
-
#
|
| 173 |
self.model_name = "emircanerol/Llama3-Med42-8B-4bit"
|
| 174 |
self.max_length = 2048
|
| 175 |
|
| 176 |
-
# First load the tokenizer since it's lighter on memory
|
| 177 |
logger.info("Loading tokenizer...")
|
| 178 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 179 |
self.model_name,
|
| 180 |
-
|
| 181 |
)
|
| 182 |
|
| 183 |
-
# Handle padding token setup
|
| 184 |
if self.tokenizer.pad_token is None:
|
| 185 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
-
|
| 188 |
-
logger.info("Initializing CPU-based pipeline...")
|
| 189 |
self.pipe = pipeline(
|
| 190 |
"text-generation",
|
| 191 |
-
model=self.
|
| 192 |
-
|
| 193 |
-
device_map="cpu", # Explicitly use CPU
|
| 194 |
-
torch_dtype=torch.float32, # Use standard precision
|
| 195 |
-
use_safetensors=True, # Enable safetensors for better memory handling
|
| 196 |
-
# Removed all quantization settings
|
| 197 |
)
|
| 198 |
-
|
| 199 |
-
logger.info("
|
| 200 |
|
| 201 |
except Exception as e:
|
| 202 |
logger.error(f"Initialization failed: {str(e)}")
|
|
@@ -204,68 +55,38 @@ class MedicalAssistant:
|
|
| 204 |
raise
|
| 205 |
|
| 206 |
def generate_response(self, message: str, chat_history: List[Dict] = None) -> str:
|
| 207 |
-
"""
|
| 208 |
-
Generate responses using basic CPU-friendly settings.
|
| 209 |
-
This method focuses on stability over speed, using conservative parameters.
|
| 210 |
-
"""
|
| 211 |
try:
|
| 212 |
-
|
|
|
|
|
|
|
| 213 |
|
| 214 |
-
|
| 215 |
-
system_prompt = """You are a medical AI assistant trained on medical knowledge.
|
| 216 |
-
Provide accurate, professional medical guidance while acknowledging limitations.
|
| 217 |
-
Always recommend consulting healthcare providers for specific medical advice."""
|
| 218 |
|
| 219 |
-
# Format our conversation for the model
|
| 220 |
-
messages = [
|
| 221 |
-
{"role": "system", "content": system_prompt},
|
| 222 |
-
{"role": "user", "content": message}
|
| 223 |
-
]
|
| 224 |
-
|
| 225 |
-
# Add recent chat history if available
|
| 226 |
-
if chat_history:
|
| 227 |
-
# Only keep recent history to manage memory
|
| 228 |
-
recent_history = chat_history[-2:] # Keep last 2 exchanges
|
| 229 |
-
for chat in recent_history:
|
| 230 |
-
messages.append({
|
| 231 |
-
"role": "user" if chat["role"] == "user" else "assistant",
|
| 232 |
-
"content": chat["content"]
|
| 233 |
-
})
|
| 234 |
-
|
| 235 |
-
logger.info("Generating response with basic settings")
|
| 236 |
-
|
| 237 |
-
# Generate with conservative parameters
|
| 238 |
response = self.pipe(
|
| 239 |
-
|
| 240 |
-
max_new_tokens=
|
| 241 |
do_sample=True,
|
| 242 |
temperature=0.7,
|
| 243 |
top_p=0.95,
|
| 244 |
-
|
| 245 |
pad_token_id=self.tokenizer.pad_token_id
|
| 246 |
)[0]["generated_text"]
|
| 247 |
|
| 248 |
-
|
| 249 |
-
response = response.split("assistant:")[-1].strip()
|
| 250 |
-
|
| 251 |
-
logger.info("Response generated successfully")
|
| 252 |
-
return response
|
| 253 |
|
| 254 |
except Exception as e:
|
| 255 |
logger.error(f"Error during response generation: {str(e)}")
|
| 256 |
logger.error(traceback.format_exc())
|
| 257 |
return f"I apologize, but I encountered an error: {str(e)}"
|
| 258 |
|
| 259 |
-
#
|
| 260 |
assistant = None
|
| 261 |
|
| 262 |
def initialize_assistant():
|
| 263 |
-
"""Initialize the assistant with careful error handling"""
|
| 264 |
global assistant
|
| 265 |
try:
|
| 266 |
-
logger.info("Attempting to initialize
|
| 267 |
assistant = MedicalAssistant()
|
| 268 |
-
logger.info("Assistant initialized successfully")
|
| 269 |
return True
|
| 270 |
except Exception as e:
|
| 271 |
logger.error(f"Failed to initialize assistant: {str(e)}")
|
|
@@ -273,7 +94,6 @@ def initialize_assistant():
|
|
| 273 |
return False
|
| 274 |
|
| 275 |
def chat_response(message: str, history: List[Dict]):
|
| 276 |
-
"""Handle chat interactions with proper error recovery"""
|
| 277 |
global assistant
|
| 278 |
|
| 279 |
if assistant is None:
|
|
@@ -288,12 +108,11 @@ def chat_response(message: str, history: List[Dict]):
|
|
| 288 |
logger.error(traceback.format_exc())
|
| 289 |
return f"I encountered an error: {str(e)}"
|
| 290 |
|
| 291 |
-
# Create
|
| 292 |
demo = gr.ChatInterface(
|
| 293 |
fn=chat_response,
|
| 294 |
-
title="
|
| 295 |
-
description="
|
| 296 |
-
Responses may take longer but will be stable and reliable.""",
|
| 297 |
examples=[
|
| 298 |
"What are the symptoms of malaria?",
|
| 299 |
"How can I prevent type 2 diabetes?",
|
|
@@ -301,7 +120,7 @@ demo = gr.ChatInterface(
|
|
| 301 |
]
|
| 302 |
)
|
| 303 |
|
| 304 |
-
# Launch
|
| 305 |
if __name__ == "__main__":
|
| 306 |
-
logger.info("Starting the
|
| 307 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
| 4 |
from typing import List, Dict
|
| 5 |
import logging
|
| 6 |
import traceback
|
| 7 |
|
| 8 |
+
# Set up basic logging
|
| 9 |
logging.basicConfig(
|
| 10 |
level=logging.INFO,
|
| 11 |
format='%(asctime)s - %(levelname)s - %(message)s'
|
|
|
|
| 15 |
class MedicalAssistant:
|
| 16 |
def __init__(self):
|
| 17 |
"""
|
| 18 |
+
Initialize the medical assistant with the pre-quantized model.
|
| 19 |
+
Designed for CPU-only environment on Hugging Face's free tier.
|
| 20 |
"""
|
| 21 |
try:
|
| 22 |
+
logger.info("Starting model initialization...")
|
| 23 |
|
| 24 |
+
# Using the pre-quantized model - no need for additional quantization
|
| 25 |
self.model_name = "emircanerol/Llama3-Med42-8B-4bit"
|
| 26 |
self.max_length = 2048
|
| 27 |
|
|
|
|
| 28 |
logger.info("Loading tokenizer...")
|
| 29 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 30 |
self.model_name,
|
| 31 |
+
trust_remote_code=True
|
| 32 |
)
|
| 33 |
|
|
|
|
| 34 |
if self.tokenizer.pad_token is None:
|
| 35 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 36 |
+
|
| 37 |
+
logger.info("Loading model...")
|
| 38 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 39 |
+
self.model_name,
|
| 40 |
+
trust_remote_code=True
|
| 41 |
+
)
|
| 42 |
|
| 43 |
+
logger.info("Creating pipeline...")
|
|
|
|
| 44 |
self.pipe = pipeline(
|
| 45 |
"text-generation",
|
| 46 |
+
model=self.model,
|
| 47 |
+
tokenizer=self.tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
)
|
| 49 |
+
|
| 50 |
+
logger.info("Initialization completed successfully!")
|
| 51 |
|
| 52 |
except Exception as e:
|
| 53 |
logger.error(f"Initialization failed: {str(e)}")
|
|
|
|
| 55 |
raise
|
| 56 |
|
| 57 |
def generate_response(self, message: str, chat_history: List[Dict] = None) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
try:
|
| 59 |
+
system_prompt = """You are a medical AI assistant. Provide accurate,
|
| 60 |
+
professional medical guidance. Always recommend consulting healthcare
|
| 61 |
+
providers for specific medical advice."""
|
| 62 |
|
| 63 |
+
prompt = f"{system_prompt}\n\nUser: {message}\nAssistant:"
|
|
|
|
|
|
|
|
|
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
response = self.pipe(
|
| 66 |
+
prompt,
|
| 67 |
+
max_new_tokens=256,
|
| 68 |
do_sample=True,
|
| 69 |
temperature=0.7,
|
| 70 |
top_p=0.95,
|
| 71 |
+
num_return_sequences=1,
|
| 72 |
pad_token_id=self.tokenizer.pad_token_id
|
| 73 |
)[0]["generated_text"]
|
| 74 |
|
| 75 |
+
return response.split("Assistant:")[-1].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
except Exception as e:
|
| 78 |
logger.error(f"Error during response generation: {str(e)}")
|
| 79 |
logger.error(traceback.format_exc())
|
| 80 |
return f"I apologize, but I encountered an error: {str(e)}"
|
| 81 |
|
| 82 |
+
# Global assistant instance
|
| 83 |
assistant = None
|
| 84 |
|
| 85 |
def initialize_assistant():
|
|
|
|
| 86 |
global assistant
|
| 87 |
try:
|
| 88 |
+
logger.info("Attempting to initialize assistant")
|
| 89 |
assistant = MedicalAssistant()
|
|
|
|
| 90 |
return True
|
| 91 |
except Exception as e:
|
| 92 |
logger.error(f"Failed to initialize assistant: {str(e)}")
|
|
|
|
| 94 |
return False
|
| 95 |
|
| 96 |
def chat_response(message: str, history: List[Dict]):
|
|
|
|
| 97 |
global assistant
|
| 98 |
|
| 99 |
if assistant is None:
|
|
|
|
| 108 |
logger.error(traceback.format_exc())
|
| 109 |
return f"I encountered an error: {str(e)}"
|
| 110 |
|
| 111 |
+
# Create the Gradio interface
|
| 112 |
demo = gr.ChatInterface(
|
| 113 |
fn=chat_response,
|
| 114 |
+
title="NURSEOGE",
|
| 115 |
+
description="This medical assistant provides guidance and information about health-related queries.",
|
|
|
|
| 116 |
examples=[
|
| 117 |
"What are the symptoms of malaria?",
|
| 118 |
"How can I prevent type 2 diabetes?",
|
|
|
|
| 120 |
]
|
| 121 |
)
|
| 122 |
|
| 123 |
+
# Launch the interface
|
| 124 |
if __name__ == "__main__":
|
| 125 |
+
logger.info("Starting the application")
|
| 126 |
demo.launch()
|