face-shape / app.py
benfunke98's picture
added Llama3
a941852 verified
raw
history blame
3.28 kB
from fastapi import FastAPI, UploadFile, File
from transformers import pipeline
from fastai.vision.all import *
from PIL import Image
import os
import io
import json
access_token = os.getenv("access_token")
# NOTE - we configure docs_url to serve the interactive Docs at the root path
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
app = FastAPI(docs_url="/")
pipe = pipeline("text2text-generation", model="google/flan-t5-small")
categories = ('Heart', 'Oblong', 'Oval', 'Round', 'Square')
learn = load_learner('model.pkl')
# Initialize the Code Llama Instruct pipeline (example with 7B model)
llama_model_id = "meta-llama/CodeLlama-7b-Instruct-hf"
llama_pipeline = pipeline(
"text-generation",
model=llama_model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
use_auth_token=access_token # Use the access token for authentication
)
@app.get("/generate")
def generate(text: str):
"""
Using the text2text-generation pipeline from `transformers`, generate text
from the given input text. The model used is `google/flan-t5-small`, which
can be found [here](https://huggingface.co/google/flan-t5-small).
"""
output = pipe(text)
return {"output": output[0]["generated_text"]}
@app.post("/face-analyse")
async def face_analyse(file: UploadFile = File(...)):
# Read the uploaded file content
request_object_content = await file.read()
try:
# Attempt to open the image
img = Image.open(io.BytesIO(request_object_content))
except Exception as e:
return {"error": "Failed to open the image file. Make sure it is a valid image file."}
# Check if img is None or not
if img is None:
return {"error": "Failed to open the image file."}
try:
# Resize the image to 300x300 pixels
img = img.resize((300, 300))
except Exception as e:
return {"error": "Failed to resize the image."}
try:
# Assuming 'learn' is your image classifier model
pred, idx, probs = learn.predict(img)
except Exception as e:
return {"error": "Failed to make predictions."}
# Assuming categories is a list of category labels
return dict(zip(categories, map(float, probs)))
@app.post("/extract-frame-details")
def extract_frame_details(text: str):
"""
Using the Code Llama Instruct pipeline from `transformers`, extract frame
details from the given input text. The model used is `meta-llama/CodeLlama-7b-Instruct-hf`.
"""
messages = [
{"role": "system", "content": "Please provide details about frames in JSON format."},
{"role": "user", "content": text},
]
terminators = [
llama_pipeline.tokenizer.eos_token_id,
llama_pipeline.tokenizer.convert_tokens_to_ids("")
]
outputs = llama_pipeline(
messages,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
generated_text = outputs[0]["generated_text"]
try:
extracted_info = json.loads(generated_text)
except json.JSONDecodeError:
return {"error": "Failed to parse the generated text as JSON."}
return extracted_info