DockFormer / dockformer /data /data_pipeline.py
bshor's picture
add all model variations
f1046e9
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import time
from typing import List
import numpy as np
import torch
import ml_collections as mlc
from rdkit import Chem
from dockformer.data import data_transforms
from dockformer.data.data_transforms import get_restype_atom37_mask, get_restypes
from dockformer.data.ligand_features import make_ligand_features
from dockformer.data.protein_features import make_protein_features
from dockformer.data.utils import FeatureTensorDict, FeatureDict
from dockformer.utils import protein
def _np_filter_and_to_tensor_dict(np_example: FeatureDict, features_to_keep: List[str]) -> FeatureTensorDict:
"""Creates dict of tensors from a dict of NumPy arrays.
Args:
np_example: A dict of NumPy feature arrays.
features: A list of strings of feature names to be returned in the dataset.
Returns:
A dictionary of features mapping feature names to features. Only the given
features are returned, all other ones are filtered out.
"""
# torch generates warnings if feature is already a torch Tensor
to_tensor = lambda t: torch.tensor(t) if type(t) != torch.Tensor else t.clone().detach()
tensor_dict = {
k: to_tensor(v) for k, v in np_example.items() if k in features_to_keep
}
return tensor_dict
def _add_protein_probablistic_features(features: FeatureDict, cfg: mlc.ConfigDict, mode: str) -> FeatureDict:
if mode == "train":
p = torch.rand(1).item()
use_clamped_fape_value = float(p < cfg.supervised.clamp_prob)
features["use_clamped_fape"] = np.float32(use_clamped_fape_value)
else:
features["use_clamped_fape"] = np.float32(0.0)
return features
@data_transforms.curry1
def compose(x, fs):
for f in fs:
x = f(x)
return x
def _apply_protein_transforms(tensors: FeatureTensorDict) -> FeatureTensorDict:
transforms = [
data_transforms.cast_to_64bit_ints,
data_transforms.squeeze_features,
data_transforms.make_atom14_masks,
data_transforms.make_atom14_positions,
data_transforms.atom37_to_frames,
data_transforms.atom37_to_torsion_angles(""),
data_transforms.make_pseudo_beta(),
data_transforms.get_backbone_frames,
data_transforms.get_chi_angles,
]
tensors = compose(transforms)(tensors)
return tensors
def _apply_protein_probablistic_transforms(tensors: FeatureTensorDict, cfg: mlc.ConfigDict, mode: str) \
-> FeatureTensorDict:
transforms = [data_transforms.make_target_feat()]
crop_feats = dict(cfg.common.feat)
if cfg[mode].fixed_size:
transforms.append(data_transforms.select_feat(list(crop_feats)))
# TODO bshor: restore transforms for training on cropped proteins, need to handle pocket somehow
# if so, look for random_crop_to_size and make_fixed_size in data_transforms.py
compose(transforms)(tensors)
return tensors
def get_psuedo_beta(pdb_path: str) -> torch.Tensor:
"""Get pseudo beta positions for a protein."""
with open(pdb_path, 'r') as f:
pdb_str = f.read()
protein_object = protein.from_pdb_string(pdb_str)
pdb_feats = make_protein_features(protein_object, "")
tensor_feats = _np_filter_and_to_tensor_dict(pdb_feats, ["aatype", "all_atom_positions", "all_atom_mask"])
pdb_feats = _apply_protein_transforms(tensor_feats)
return pdb_feats["pseudo_beta"]
class DataPipeline:
"""Assembles input features."""
def __init__(self, config: mlc.ConfigDict, mode: str):
self.config = config
self.mode = mode
self.feature_names = config.common.unsupervised_features
if config[mode].supervised:
self.feature_names += config.supervised.supervised_features
def process_pdb(self, pdb_path: str) -> FeatureTensorDict:
"""
Assembles features for a protein in a PDB file.
"""
with open(pdb_path, 'r') as f:
pdb_str = f.read()
protein_object = protein.from_pdb_string(pdb_str)
description = os.path.splitext(os.path.basename(pdb_path))[0].upper()
pdb_feats = make_protein_features(protein_object, description)
pdb_feats = _add_protein_probablistic_features(pdb_feats, self.config, self.mode)
tensor_feats = _np_filter_and_to_tensor_dict(pdb_feats, self.feature_names)
tensor_feats = _apply_protein_transforms(tensor_feats)
tensor_feats = _apply_protein_probablistic_transforms(tensor_feats, self.config, self.mode)
return tensor_feats
def process_smiles(self, smiles: str) -> FeatureTensorDict:
ligand = Chem.MolFromSmiles(smiles)
return make_ligand_features(ligand)
def process_mol2(self, mol2_path: str) -> FeatureTensorDict:
"""
Assembles features for a ligand in a mol2 file.
"""
ligand = Chem.MolFromMol2File(mol2_path)
assert ligand is not None, f"Failed to parse ligand from {mol2_path}"
conf = ligand.GetConformer()
positions = torch.tensor(conf.GetPositions())
return {
**make_ligand_features(ligand),
"gt_ligand_positions": positions.float()
}
def process_sdf(self, sdf_path: str) -> FeatureTensorDict:
"""
Assembles features for a ligand in a mol2 file.
"""
ligand = Chem.MolFromMolFile(sdf_path)
assert ligand is not None, f"Failed to parse ligand from {sdf_path}"
conf = ligand.GetConformer(0)
positions = torch.tensor(conf.GetPositions())
return {
**make_ligand_features(ligand),
"ligand_positions": positions.float()
}
def process_sdf_list(self, sdf_path_list: List[str]) -> FeatureTensorDict:
all_sdf_feats = [self.process_sdf(sdf_path) for sdf_path in sdf_path_list]
all_sizes = [sdf_feats["ligand_target_feat"].shape[0] for sdf_feats in all_sdf_feats]
joined_ligand_feats = {}
for k in all_sdf_feats[0].keys():
if k == "ligand_positions":
joined_positions = all_sdf_feats[0][k]
prev_offset = joined_positions.max(dim=0).values + 100
for i, sdf_feats in enumerate(all_sdf_feats[1:]):
offset = prev_offset - sdf_feats[k].min(dim=0).values
joined_positions = torch.cat([joined_positions, sdf_feats[k] + offset], dim=0)
prev_offset = joined_positions.max(dim=0).values + 100
joined_ligand_feats[k] = joined_positions
elif k in ["ligand_target_feat", "ligand_atype", "ligand_charge", "ligand_chirality", "ligand_bonds"]:
joined_ligand_feats[k] = torch.cat([sdf_feats[k] for sdf_feats in all_sdf_feats], dim=0)
if k == "ligand_target_feat":
joined_ligand_feats["ligand_idx"] = torch.cat([torch.full((sdf_feats[k].shape[0],), i)
for i, sdf_feats in enumerate(all_sdf_feats)], dim=0)
elif k == "ligand_bonds":
joined_ligand_feats["ligand_bonds_idx"] = torch.cat([torch.full((sdf_feats[k].shape[0],), i)
for i, sdf_feats in enumerate(all_sdf_feats)],
dim=0)
elif k == "ligand_bonds_feat":
joined_feature = torch.zeros((sum(all_sizes), sum(all_sizes), all_sdf_feats[0][k].shape[2]))
for i, sdf_feats in enumerate(all_sdf_feats):
start_idx = sum(all_sizes[:i])
end_idx = sum(all_sizes[:i + 1])
joined_feature[start_idx:end_idx, start_idx:end_idx, :] = sdf_feats[k]
joined_ligand_feats[k] = joined_feature
else:
raise ValueError(f"Unknown key in sdf list features {k}")
return joined_ligand_feats
@staticmethod
def _get_gt_positions(ref_ligand_path: str, gt_ligand_path: str):
ref_ligand = Chem.MolFromMolFile(ref_ligand_path)
gt_ligand = Chem.MolFromMolFile(gt_ligand_path)
gt_original_positions = gt_ligand.GetConformer(0).GetPositions()
gt_positions = [gt_original_positions[idx] for idx in gt_ligand.GetSubstructMatch(ref_ligand)]
if len(gt_positions) == 0:
from rdkit.Chem import rdFMCS
mcs_result = rdFMCS.FindMCS([ref_ligand, gt_ligand])
if mcs_result.canceled:
print("MCS search canceled, Error!!!! Can't map ref ligand to gt ligand")
gt_positions = gt_original_positions
else:
mcs_mol = Chem.MolFromSmarts(mcs_result.smartsString)
ref_match = ref_ligand.GetSubstructMatch(mcs_mol)
gt_match = gt_ligand.GetSubstructMatch(mcs_mol)
ref_to_gt_atom = {ref_idx: gt_idx for ref_idx, gt_idx in zip(ref_match, gt_match)}
gt_positions = [gt_original_positions[ref_to_gt_atom[i]] for i in sorted(list(ref_to_gt_atom.keys()))]
return gt_positions
def get_matching_positions_list(self, ref_path_list: List[str], gt_path_list: List[str]):
joined_gt_positions = []
for ref_ligand_path, gt_ligand_path in zip(ref_path_list, gt_path_list):
gt_positions = self.get_matching_positions(ref_ligand_path, gt_ligand_path)
joined_gt_positions.extend(gt_positions)
return torch.tensor(np.array(joined_gt_positions)).float()
def get_matching_positions(self, ref_ligand_path: str, gt_ligand_path: str):
gt_positions = self._get_gt_positions(ref_ligand_path, gt_ligand_path)
return torch.tensor(np.array(gt_positions)) .float()
def _prepare_recycles(feat: torch.Tensor, num_recycles: int) -> torch.Tensor:
return feat.unsqueeze(-1).repeat(*([1] * len(feat.shape)), num_recycles)
def _fit_to_crop(target_tensor: torch.Tensor, crop_size: int, start_ind: int) -> torch.Tensor:
if len(target_tensor.shape) == 1:
ret = torch.zeros((crop_size, ), dtype=target_tensor.dtype)
ret[start_ind:start_ind + target_tensor.shape[0]] = target_tensor
return ret
elif len(target_tensor.shape) == 2:
ret = torch.zeros((crop_size, target_tensor.shape[-1]), dtype=target_tensor.dtype)
ret[start_ind:start_ind + target_tensor.shape[0], :] = target_tensor
return ret
else:
ret = torch.zeros((crop_size, *target_tensor.shape[1:]), dtype=target_tensor.dtype)
ret[start_ind:start_ind + target_tensor.shape[0], ...] = target_tensor
return ret
def parse_input_json(input_path: str, mode: str, config: mlc.ConfigDict, data_pipeline: DataPipeline,
data_dir: str, idx: int) -> FeatureTensorDict:
start_load_time = time.time()
input_data = json.load(open(input_path, "r"))
if mode == "train" or mode == "eval":
print("loading", input_data["pdb_id"], end=" ")
num_recycles = config.common.max_recycling_iters + 1
input_pdb_path = os.path.join(data_dir, input_data["input_structure"])
input_protein_feats = data_pipeline.process_pdb(pdb_path=input_pdb_path)
# load ref sdf
if "ref_sdf" in input_data:
ref_sdf_path = os.path.join(data_dir, input_data["ref_sdf"])
ref_ligand_feats = data_pipeline.process_sdf(sdf_path=ref_sdf_path)
ref_ligand_feats["ligand_idx"] = torch.zeros((ref_ligand_feats["ligand_target_feat"].shape[0],))
ref_ligand_feats["ligand_bonds_idx"] = torch.zeros((ref_ligand_feats["ligand_bonds"].shape[0],))
elif "ref_sdf_list" in input_data:
sdf_path_list = [os.path.join(data_dir, i) for i in input_data["ref_sdf_list"]]
ref_ligand_feats = data_pipeline.process_sdf_list(sdf_path_list=sdf_path_list)
else:
raise ValueError("ref_sdf or ref_sdf_list must be in input_data")
n_res = input_protein_feats["protein_target_feat"].shape[0]
n_lig = ref_ligand_feats["ligand_target_feat"].shape[0]
n_affinity = 1
# add 1 for affinity token
crop_size = n_res + n_lig + n_affinity
if (mode == "train" or mode == "eval") and config.train.fixed_size:
crop_size = config.train.crop_size
assert crop_size >= n_res + n_lig + n_affinity, f"crop_size: {crop_size}, n_res: {n_res}, n_lig: {n_lig}"
token_mask = torch.zeros((crop_size,), dtype=torch.float32)
token_mask[:n_res + n_lig + n_affinity] = 1
protein_mask = torch.zeros((crop_size,), dtype=torch.float32)
protein_mask[:n_res] = 1
ligand_mask = torch.zeros((crop_size,), dtype=torch.float32)
ligand_mask[n_res:n_res + n_lig] = 1
affinity_mask = torch.zeros((crop_size,), dtype=torch.float32)
affinity_mask[n_res + n_lig] = 1
structural_mask = torch.zeros((crop_size,), dtype=torch.float32)
structural_mask[:n_res + n_lig] = 1
inter_pair_mask = torch.zeros((crop_size, crop_size), dtype=torch.float32)
inter_pair_mask[:n_res, n_res:n_res + n_lig] = 1
inter_pair_mask[n_res:n_res + n_lig, :n_res] = 1
protein_tf_dim = input_protein_feats["protein_target_feat"].shape[-1]
ligand_tf_dim = ref_ligand_feats["ligand_target_feat"].shape[-1]
joined_tf_dim = protein_tf_dim + ligand_tf_dim
target_feat = torch.zeros((crop_size, joined_tf_dim + 3), dtype=torch.float32)
target_feat[:n_res, :protein_tf_dim] = input_protein_feats["protein_target_feat"]
target_feat[n_res:n_res + n_lig, protein_tf_dim:joined_tf_dim] = ref_ligand_feats["ligand_target_feat"]
target_feat[:n_res, joined_tf_dim] = 1 # Set "is_protein" flag for protein rows
target_feat[n_res:n_res + n_lig, joined_tf_dim + 1] = 1 # Set "is_ligand" flag for ligand rows
target_feat[n_res + n_lig, joined_tf_dim + 2] = 1 # Set "is_affinity" flag for affinity row
ligand_bonds_feat = torch.zeros((crop_size, crop_size, ref_ligand_feats["ligand_bonds_feat"].shape[-1]),
dtype=torch.float32)
ligand_bonds_feat[n_res:n_res + n_lig, n_res:n_res + n_lig] = ref_ligand_feats["ligand_bonds_feat"]
input_positions = torch.zeros((crop_size, 3), dtype=torch.float32)
input_positions[:n_res] = input_protein_feats["pseudo_beta"]
input_positions[n_res:n_res + n_lig] = ref_ligand_feats["ligand_positions"]
protein_distogram_mask = torch.zeros(crop_size)
if mode == "train":
ones_indices = torch.randperm(n_res)[:int(n_res * config.train.protein_distogram_mask_prob)]
# print(ones_indices)
protein_distogram_mask[ones_indices] = 1
input_positions = input_positions * (1 - protein_distogram_mask).unsqueeze(-1)
elif mode == "predict":
# ignore all positions where pseudo_beta is 0, 0, 0
protein_distogram_mask = (input_positions == 0).all(dim=-1).float()
# print("Ignoring residues", torch.nonzero(distogram_mask).flatten())
# Implement ligand as amino acid type 20
ligand_aatype = 20 * torch.ones((n_lig,), dtype=input_protein_feats["aatype"].dtype)
aatype = torch.cat([input_protein_feats["aatype"], ligand_aatype], dim=0)
restype_atom14_to_atom37, restype_atom37_to_atom14, restype_atom14_mask = get_restypes(target_feat.device)
lig_residx_atom37_to_atom14 = restype_atom37_to_atom14[20].repeat(n_lig, 1)
residx_atom37_to_atom14 = torch.cat([input_protein_feats["residx_atom37_to_atom14"], lig_residx_atom37_to_atom14],
dim=0)
restype_atom37_mask = get_restype_atom37_mask(target_feat.device)
lig_atom37_atom_exists = restype_atom37_mask[20].repeat(n_lig, 1)
atom37_atom_exists = torch.cat([input_protein_feats["atom37_atom_exists"], lig_atom37_atom_exists], dim=0)
feats = {
"token_mask": token_mask,
"protein_mask": protein_mask,
"ligand_mask": ligand_mask,
"affinity_mask": affinity_mask,
"structural_mask": structural_mask,
"inter_pair_mask": inter_pair_mask,
"target_feat": target_feat,
"ligand_bonds_feat": ligand_bonds_feat,
"input_positions": input_positions,
"protein_distogram_mask": protein_distogram_mask,
"protein_residue_index": _fit_to_crop(input_protein_feats["residue_index"], crop_size, 0),
"aatype": _fit_to_crop(aatype, crop_size, 0),
"residx_atom37_to_atom14": _fit_to_crop(residx_atom37_to_atom14, crop_size, 0),
"atom37_atom_exists": _fit_to_crop(atom37_atom_exists, crop_size, 0),
}
if mode == "predict":
feats.update({
"in_chain_residue_index": input_protein_feats["in_chain_residue_index"],
"chain_index": input_protein_feats["chain_index"],
"ligand_atype": ref_ligand_feats["ligand_atype"],
"ligand_chirality": ref_ligand_feats["ligand_chirality"],
"ligand_charge": ref_ligand_feats["ligand_charge"],
"ligand_bonds": ref_ligand_feats["ligand_bonds"],
"ligand_idx": ref_ligand_feats["ligand_idx"],
"ligand_bonds_idx": ref_ligand_feats["ligand_bonds_idx"],
})
if mode == 'train' or mode == 'eval':
gt_pdb_path = os.path.join(data_dir, input_data["gt_structure"])
gt_protein_feats = data_pipeline.process_pdb(pdb_path=gt_pdb_path)
if "gt_sdf" in input_data:
gt_ligand_positions = data_pipeline.get_matching_positions(
os.path.join(data_dir, input_data["ref_sdf"]),
os.path.join(data_dir, input_data["gt_sdf"]),
)
elif "gt_sdf_list" in input_data:
gt_ligand_positions = data_pipeline.get_matching_positions_list(
[os.path.join(data_dir, i) for i in input_data["ref_sdf_list"]],
[os.path.join(data_dir, i) for i in input_data["gt_sdf_list"]],
)
else:
raise ValueError("gt_sdf or gt_sdf_list must be in input_data")
affinity_loss_factor = torch.tensor([1.0], dtype=torch.float32)
if input_data["affinity"] is None:
eps = 1e-6
affinity_loss_factor = torch.tensor([eps], dtype=torch.float32)
affinity = torch.tensor([0.0], dtype=torch.float32)
else:
affinity = torch.tensor([input_data["affinity"]], dtype=torch.float32)
resolution = torch.tensor(input_data["resolution"], dtype=torch.float32)
# prepare inter_contacts
expanded_prot_pos = gt_protein_feats["pseudo_beta"].unsqueeze(1) # Shape: (N_prot, 1, 3)
expanded_lig_pos = gt_ligand_positions.unsqueeze(0) # Shape: (1, N_lig, 3)
distances = torch.sqrt(torch.sum((expanded_prot_pos - expanded_lig_pos) ** 2, dim=-1))
inter_contact = (distances < 5.0).float()
binding_site_mask = inter_contact.any(dim=1).float()
inter_contact_reshaped_to_crop = torch.zeros((crop_size, crop_size), dtype=torch.float32)
inter_contact_reshaped_to_crop[:n_res, n_res:n_res + n_lig] = inter_contact
inter_contact_reshaped_to_crop[n_res:n_res + n_lig, :n_res] = inter_contact.T
# Use CA positions only
lig_single_res_atom37_mask = torch.zeros((37,), dtype=torch.float32)
lig_single_res_atom37_mask[1] = 1
lig_atom37_mask = lig_single_res_atom37_mask.unsqueeze(0).expand(n_lig, -1)
lig_single_res_atom14_mask = torch.zeros((14,), dtype=torch.float32)
lig_single_res_atom14_mask[1] = 1
lig_atom14_mask = lig_single_res_atom14_mask.unsqueeze(0).expand(n_lig, -1)
lig_atom37_positions = gt_ligand_positions.unsqueeze(1).expand(-1, 37, -1)
lig_atom37_positions = lig_atom37_positions * lig_single_res_atom37_mask.view(1, 37, 1).expand(n_lig, -1, 3)
lig_atom14_positions = gt_ligand_positions.unsqueeze(1).expand(-1, 14, -1)
lig_atom14_positions = lig_atom14_positions * lig_single_res_atom14_mask.view(1, 14, 1).expand(n_lig, -1, 3)
atom37_gt_positions = torch.cat([gt_protein_feats["all_atom_positions"], lig_atom37_positions], dim=0)
atom37_atom_exists_in_res = torch.cat([gt_protein_feats["atom37_atom_exists"], lig_atom37_mask], dim=0)
atom37_atom_exists_in_gt = torch.cat([gt_protein_feats["all_atom_mask"], lig_atom37_mask], dim=0)
atom14_gt_positions = torch.cat([gt_protein_feats["atom14_gt_positions"], lig_atom14_positions], dim=0)
atom14_atom_exists_in_res = torch.cat([gt_protein_feats["atom14_atom_exists"], lig_atom14_mask], dim=0)
atom14_atom_exists_in_gt = torch.cat([gt_protein_feats["atom14_gt_exists"], lig_atom14_mask], dim=0)
gt_pseudo_beta_with_lig = torch.cat([gt_protein_feats["pseudo_beta"], gt_ligand_positions], dim=0)
gt_pseudo_beta_with_lig_mask = torch.cat(
[gt_protein_feats["pseudo_beta_mask"],
torch.ones((n_lig,), dtype=gt_protein_feats["pseudo_beta_mask"].dtype)],
dim=0)
# IGNORES: residx_atom14_to_atom37, rigidgroups_group_exists,
# rigidgroups_group_is_ambiguous, pseudo_beta_mask, backbone_rigid_mask, protein_target_feat
gt_protein_feats = {
"atom37_gt_positions": atom37_gt_positions, # torch.Size([n_struct, 37, 3])
"atom37_atom_exists_in_res": atom37_atom_exists_in_res, # torch.Size([n_struct, 37])
"atom37_atom_exists_in_gt": atom37_atom_exists_in_gt, # torch.Size([n_struct, 37])
"atom14_gt_positions": atom14_gt_positions, # torch.Size([n_struct, 14, 3])
"atom14_atom_exists_in_res": atom14_atom_exists_in_res, # torch.Size([n_struct, 14])
"atom14_atom_exists_in_gt": atom14_atom_exists_in_gt, # torch.Size([n_struct, 14])
"gt_pseudo_beta_with_lig": gt_pseudo_beta_with_lig, # torch.Size([n_struct, 3])
"gt_pseudo_beta_with_lig_mask": gt_pseudo_beta_with_lig_mask, # torch.Size([n_struct])
# These we don't need to add the ligand to, because padding is sufficient (everything should be 0)
"atom14_alt_gt_positions": gt_protein_feats["atom14_alt_gt_positions"], # torch.Size([n_res, 14, 3])
"atom14_alt_gt_exists": gt_protein_feats["atom14_alt_gt_exists"], # torch.Size([n_res, 14])
"atom14_atom_is_ambiguous": gt_protein_feats["atom14_atom_is_ambiguous"], # torch.Size([n_res, 14])
"rigidgroups_gt_frames": gt_protein_feats["rigidgroups_gt_frames"], # torch.Size([n_res, 8, 4, 4])
"rigidgroups_gt_exists": gt_protein_feats["rigidgroups_gt_exists"], # torch.Size([n_res, 8])
"rigidgroups_alt_gt_frames": gt_protein_feats["rigidgroups_alt_gt_frames"], # torch.Size([n_res, 8, 4, 4])
"backbone_rigid_tensor": gt_protein_feats["backbone_rigid_tensor"], # torch.Size([n_res, 4, 4])
"backbone_rigid_mask": gt_protein_feats["backbone_rigid_mask"], # torch.Size([n_res])
"chi_angles_sin_cos": gt_protein_feats["chi_angles_sin_cos"],
"chi_mask": gt_protein_feats["chi_mask"],
}
for k, v in gt_protein_feats.items():
gt_protein_feats[k] = _fit_to_crop(v, crop_size, 0)
feats = {
**feats,
**gt_protein_feats,
"gt_ligand_positions": _fit_to_crop(gt_ligand_positions, crop_size, n_res),
"resolution": resolution,
"affinity": affinity,
"affinity_loss_factor": affinity_loss_factor,
"seq_length": torch.tensor(n_res + n_lig),
"binding_site_mask": _fit_to_crop(binding_site_mask, crop_size, 0),
"gt_inter_contacts": inter_contact_reshaped_to_crop,
}
for k, v in feats.items():
# print(k, v.shape)
feats[k] = _prepare_recycles(v, num_recycles)
feats["batch_idx"] = torch.tensor(
[idx for _ in range(crop_size)], dtype=torch.int64, device=feats["aatype"].device
)
print("load time", round(time.time() - start_load_time, 4))
return feats