benticha commited on
Commit
4b0268e
Β·
1 Parent(s): 23e7cbd

fixe knowledge base

Browse files
__pycache__/utils.cpython-311.pyc ADDED
Binary file (5.73 kB). View file
 
app.py CHANGED
@@ -53,7 +53,7 @@ if prompt :
53
  message_placeholder = st.empty()
54
  full_response = ""
55
  # Define the basic input structure for the chains
56
- input_dict = {"input": prompt}
57
 
58
 
59
  with collect_runs() as cb:
 
53
  message_placeholder = st.empty()
54
  full_response = ""
55
  # Define the basic input structure for the chains
56
+ input_dict = {"input": prompt.lower()}
57
 
58
 
59
  with collect_runs() as cb:
{sup-knowledge-eng-nomic/ec6754ec-5fa6-4b04-bfb6-d2f052cd81fe β†’ knowledge-base/5836a1af-4663-4a50-a6a7-27a140e06517}/data_level0.bin RENAMED
File without changes
{sup-knowledge-eng-nomic/ec6754ec-5fa6-4b04-bfb6-d2f052cd81fe β†’ knowledge-base/5836a1af-4663-4a50-a6a7-27a140e06517}/header.bin RENAMED
File without changes
{sup-knowledge-eng-nomic/ec6754ec-5fa6-4b04-bfb6-d2f052cd81fe β†’ knowledge-base/5836a1af-4663-4a50-a6a7-27a140e06517}/length.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a5fb64b021f47ff585087f63e019088911fa892704ffa3e9506f3a120d807cfa
3
  size 4000
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9aaf11150dfda02ab48ea570f99528198a3a2ef4bf99b8a4f717ef51f2ba790
3
  size 4000
{sup-knowledge-eng-nomic/ec6754ec-5fa6-4b04-bfb6-d2f052cd81fe β†’ knowledge-base/5836a1af-4663-4a50-a6a7-27a140e06517}/link_lists.bin RENAMED
File without changes
{sup-knowledge-eng-nomic β†’ knowledge-base}/chroma.sqlite3 RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:112a7ee3f7fb675803ed49ffe7901311156373f8ba3142c3a3026b2f3936d633
3
  size 7704576
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80a088dcdeeeeda4cc6de332a7e7d8315f7c052892d9c0795ab4bb52f43fa1b4
3
  size 7704576
utils.py CHANGED
@@ -14,12 +14,12 @@ from qdrant_client import models
14
  load_dotenv()
15
  #Retriever
16
  def retriever(n_docs=5):
17
- vector_database_path = "sup-knowledge-eng-nomic"
18
 
19
  embeddings_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local")
20
 
21
 
22
- vectorstore = Chroma(collection_name="sup-store-eng-nomic",
23
  persist_directory=vector_database_path,
24
  embedding_function=embeddings_model)
25
 
 
14
  load_dotenv()
15
  #Retriever
16
  def retriever(n_docs=5):
17
+ vector_database_path = "knowledge-base"
18
 
19
  embeddings_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local")
20
 
21
 
22
+ vectorstore = Chroma(collection_name="knowledge-base",
23
  persist_directory=vector_database_path,
24
  embedding_function=embeddings_model)
25