Spaces:
Running
Running
import functools | |
import math | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from einops import rearrange | |
from timm.models.vision_transformer import Mlp | |
class CogVideoXPatchEmbed(nn.Module): | |
def __init__( | |
self, | |
patch_size: int = 2, | |
in_channels: int = 16, | |
embed_dim: int = 1920, | |
text_embed_dim: int = 4096, | |
bias: bool = True, | |
) -> None: | |
super().__init__() | |
self.patch_size = patch_size | |
self.proj = nn.Conv2d( | |
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias | |
) | |
self.text_proj = nn.Linear(text_embed_dim, embed_dim) | |
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): | |
r""" | |
Args: | |
text_embeds (`torch.Tensor`): | |
Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim). | |
image_embeds (`torch.Tensor`): | |
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width). | |
""" | |
text_embeds = self.text_proj(text_embeds) | |
batch, num_frames, channels, height, width = image_embeds.shape | |
image_embeds = image_embeds.reshape(-1, channels, height, width) | |
image_embeds = self.proj(image_embeds) | |
image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:]) | |
image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels] | |
image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels] | |
embeds = torch.cat( | |
[text_embeds, image_embeds], dim=1 | |
).contiguous() # [batch, seq_length + num_frames x height x width, channels] | |
return embeds | |
class OpenSoraPatchEmbed3D(nn.Module): | |
"""Video to Patch Embedding. | |
Args: | |
patch_size (int): Patch token size. Default: (2,4,4). | |
in_chans (int): Number of input video channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
""" | |
def __init__( | |
self, | |
patch_size=(2, 4, 4), | |
in_chans=3, | |
embed_dim=96, | |
norm_layer=None, | |
flatten=True, | |
): | |
super().__init__() | |
self.patch_size = patch_size | |
self.flatten = flatten | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
if norm_layer is not None: | |
self.norm = norm_layer(embed_dim) | |
else: | |
self.norm = None | |
def forward(self, x): | |
"""Forward function.""" | |
# padding | |
_, _, D, H, W = x.size() | |
if W % self.patch_size[2] != 0: | |
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) | |
if H % self.patch_size[1] != 0: | |
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) | |
if D % self.patch_size[0] != 0: | |
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) | |
x = self.proj(x) # (B C T H W) | |
if self.norm is not None: | |
D, Wh, Ww = x.size(2), x.size(3), x.size(4) | |
x = x.flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) | |
if self.flatten: | |
x = x.flatten(2).transpose(1, 2) # BCTHW -> BNC | |
return x | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half) | |
freqs = freqs.to(device=t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t, dtype): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
if t_freq.dtype != dtype: | |
t_freq = t_freq.to(dtype) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class SizeEmbedder(TimestepEmbedder): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size) | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
self.outdim = hidden_size | |
def forward(self, s, bs): | |
if s.ndim == 1: | |
s = s[:, None] | |
assert s.ndim == 2 | |
if s.shape[0] != bs: | |
s = s.repeat(bs // s.shape[0], 1) | |
assert s.shape[0] == bs | |
b, dims = s.shape[0], s.shape[1] | |
s = rearrange(s, "b d -> (b d)") | |
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype) | |
s_emb = self.mlp(s_freq) | |
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) | |
return s_emb | |
def dtype(self): | |
return next(self.parameters()).dtype | |
class OpenSoraCaptionEmbedder(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
hidden_size, | |
uncond_prob, | |
act_layer=nn.GELU(approximate="tanh"), | |
token_num=120, | |
): | |
super().__init__() | |
self.y_proj = Mlp( | |
in_features=in_channels, | |
hidden_features=hidden_size, | |
out_features=hidden_size, | |
act_layer=act_layer, | |
drop=0, | |
) | |
self.register_buffer( | |
"y_embedding", | |
torch.randn(token_num, in_channels) / in_channels**0.5, | |
) | |
self.uncond_prob = uncond_prob | |
def token_drop(self, caption, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) | |
return caption | |
def forward(self, caption, train, force_drop_ids=None): | |
if train: | |
assert caption.shape[2:] == self.y_embedding.shape | |
use_dropout = self.uncond_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
caption = self.token_drop(caption, force_drop_ids) | |
caption = self.y_proj(caption) | |
return caption | |
class OpenSoraPositionEmbedding2D(nn.Module): | |
def __init__(self, dim: int) -> None: | |
super().__init__() | |
self.dim = dim | |
assert dim % 4 == 0, "dim must be divisible by 4" | |
half_dim = dim // 2 | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, half_dim, 2).float() / half_dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
def _get_sin_cos_emb(self, t: torch.Tensor): | |
out = torch.einsum("i,d->id", t, self.inv_freq) | |
emb_cos = torch.cos(out) | |
emb_sin = torch.sin(out) | |
return torch.cat((emb_sin, emb_cos), dim=-1) | |
def _get_cached_emb( | |
self, | |
device: torch.device, | |
dtype: torch.dtype, | |
h: int, | |
w: int, | |
scale: float = 1.0, | |
base_size: Optional[int] = None, | |
): | |
grid_h = torch.arange(h, device=device) / scale | |
grid_w = torch.arange(w, device=device) / scale | |
if base_size is not None: | |
grid_h *= base_size / h | |
grid_w *= base_size / w | |
grid_h, grid_w = torch.meshgrid( | |
grid_w, | |
grid_h, | |
indexing="ij", | |
) # here w goes first | |
grid_h = grid_h.t().reshape(-1) | |
grid_w = grid_w.t().reshape(-1) | |
emb_h = self._get_sin_cos_emb(grid_h) | |
emb_w = self._get_sin_cos_emb(grid_w) | |
return torch.concat([emb_h, emb_w], dim=-1).unsqueeze(0).to(dtype) | |
def forward( | |
self, | |
x: torch.Tensor, | |
h: int, | |
w: int, | |
scale: Optional[float] = 1.0, | |
base_size: Optional[int] = None, | |
) -> torch.Tensor: | |
return self._get_cached_emb(x.device, x.dtype, h, w, scale, base_size) | |
def get_3d_rotary_pos_embed( | |
embed_dim, crops_coords, grid_size, temporal_size, theta: int = 10000, use_real: bool = True | |
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: | |
""" | |
RoPE for video tokens with 3D structure. | |
Args: | |
embed_dim: (`int`): | |
The embedding dimension size, corresponding to hidden_size_head. | |
crops_coords (`Tuple[int]`): | |
The top-left and bottom-right coordinates of the crop. | |
grid_size (`Tuple[int]`): | |
The grid size of the spatial positional embedding (height, width). | |
temporal_size (`int`): | |
The size of the temporal dimension. | |
theta (`float`): | |
Scaling factor for frequency computation. | |
use_real (`bool`): | |
If True, return real part and imaginary part separately. Otherwise, return complex numbers. | |
Returns: | |
`torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`. | |
""" | |
start, stop = crops_coords | |
grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32) | |
grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32) | |
grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32) | |
# Compute dimensions for each axis | |
dim_t = embed_dim // 4 | |
dim_h = embed_dim // 8 * 3 | |
dim_w = embed_dim // 8 * 3 | |
# Temporal frequencies | |
freqs_t = 1.0 / (theta ** (torch.arange(0, dim_t, 2).float() / dim_t)) | |
grid_t = torch.from_numpy(grid_t).float() | |
freqs_t = torch.einsum("n , f -> n f", grid_t, freqs_t) | |
freqs_t = freqs_t.repeat_interleave(2, dim=-1) | |
# Spatial frequencies for height and width | |
freqs_h = 1.0 / (theta ** (torch.arange(0, dim_h, 2).float() / dim_h)) | |
freqs_w = 1.0 / (theta ** (torch.arange(0, dim_w, 2).float() / dim_w)) | |
grid_h = torch.from_numpy(grid_h).float() | |
grid_w = torch.from_numpy(grid_w).float() | |
freqs_h = torch.einsum("n , f -> n f", grid_h, freqs_h) | |
freqs_w = torch.einsum("n , f -> n f", grid_w, freqs_w) | |
freqs_h = freqs_h.repeat_interleave(2, dim=-1) | |
freqs_w = freqs_w.repeat_interleave(2, dim=-1) | |
# Broadcast and concatenate tensors along specified dimension | |
def broadcast(tensors, dim=-1): | |
num_tensors = len(tensors) | |
shape_lens = {len(t.shape) for t in tensors} | |
assert len(shape_lens) == 1, "tensors must all have the same number of dimensions" | |
shape_len = list(shape_lens)[0] | |
dim = (dim + shape_len) if dim < 0 else dim | |
dims = list(zip(*(list(t.shape) for t in tensors))) | |
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] | |
assert all( | |
[*(len(set(t[1])) <= 2 for t in expandable_dims)] | |
), "invalid dimensions for broadcastable concatenation" | |
max_dims = [(t[0], max(t[1])) for t in expandable_dims] | |
expanded_dims = [(t[0], (t[1],) * num_tensors) for t in max_dims] | |
expanded_dims.insert(dim, (dim, dims[dim])) | |
expandable_shapes = list(zip(*(t[1] for t in expanded_dims))) | |
tensors = [t[0].expand(*t[1]) for t in zip(tensors, expandable_shapes)] | |
return torch.cat(tensors, dim=dim) | |
freqs = broadcast((freqs_t[:, None, None, :], freqs_h[None, :, None, :], freqs_w[None, None, :, :]), dim=-1) | |
t, h, w, d = freqs.shape | |
freqs = freqs.view(t * h * w, d) | |
# Generate sine and cosine components | |
sin = freqs.sin() | |
cos = freqs.cos() | |
if use_real: | |
return cos, sin | |
else: | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) | |
return freqs_cis | |
def apply_rotary_emb( | |
x: torch.Tensor, | |
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], | |
use_real: bool = True, | |
use_real_unbind_dim: int = -1, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings | |
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are | |
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting | |
tensors contain rotary embeddings and are returned as real tensors. | |
Args: | |
x (`torch.Tensor`): | |
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply | |
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],) | |
Returns: | |
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. | |
""" | |
if use_real: | |
cos, sin = freqs_cis # [S, D] | |
cos = cos[None, None] | |
sin = sin[None, None] | |
cos, sin = cos.to(x.device), sin.to(x.device) | |
if use_real_unbind_dim == -1: | |
# Use for example in Lumina | |
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2] | |
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) | |
elif use_real_unbind_dim == -2: | |
# Use for example in Stable Audio | |
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2] | |
x_rotated = torch.cat([-x_imag, x_real], dim=-1) | |
else: | |
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.") | |
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) | |
return out | |
else: | |
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2)) | |
freqs_cis = freqs_cis.unsqueeze(2) | |
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3) | |
return x_out.type_as(x) | |