bgamazay's picture
Update app.py
8069fa8 verified
raw
history blame
16.9 kB
import gradio as gr
import pandas as pd
import os
import zipfile
import base64
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
title = {AI Energy Score Leaderboard - February 2025},
year = {2025},
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""
# List of tasks (CSV filenames)
tasks = [
'asr.csv',
'object_detection.csv',
'text_classification.csv',
'image_captioning.csv',
'question_answering.csv',
'text_generation.csv',
'image_classification.csv',
'sentence_similarity.csv',
'image_generation.csv',
'summarization.csv'
]
def format_stars(score):
try:
score_int = int(score)
except Exception:
score_int = 0
# Render stars in black with a slightly larger font.
return f'<span style="color: black; font-size:1.5em;">{"★" * score_int}</span>'
def make_link(mname):
parts = str(mname).split('/')
display_name = parts[1] if len(parts) > 1 else mname
return f'<a href="https://huggingface.co/{mname}" target="_blank">{display_name}</a>'
def extract_link_text(html_link):
"""Extracts the inner text from an HTML link."""
start = html_link.find('>') + 1
end = html_link.rfind('</a>')
if start > 0 and end > start:
return html_link[start:end]
else:
return html_link
def generate_html_table_from_df(df):
"""
Given a dataframe with a numeric energy column (gpu_energy_numeric),
generate an HTML table with three columns:
- Model (the link, with a fixed width based on the longest model name)
- GPU Energy (Wh) plus a horizontal bar whose width is proportional
to the energy value relative to the maximum in the table.
- Score (displayed as stars)
"""
# Compute a static width (in pixels) for the Model column based on the longest model name.
if not df.empty:
max_length = max(len(extract_link_text(link)) for link in df['Model'])
else:
max_length = 10
# Multiply by an estimated average character width (10 pixels) and add some extra padding.
static_width = max_length * 10 + 16
max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1
color_map = {"1": "black", "2": "black", "3": "black", "4": "black", "5": "black"}
html = '<table style="width:100%; border-collapse: collapse; font-family: Inter, sans-serif;">'
# Keep only one header (the one with hover text)
html += '<thead><tr style="background-color: #f2f2f2;">'
html += '<th style="text-align: left; padding: 8px;" title="Model name with link to Hugging Face">Model</th>'
html += '<th style="text-align: left; padding: 8px;" title="GPU energy consumed in Watt-hours for 1,000 queries">GPU Energy (Wh)</th>'
html += '<th style="text-align: left; padding: 8px;" title="5 is most efficient, 1 is least. Relative energy efficiency score relative to other models in task/class at the time of leaderboard launch">Score</th>'
html += '</tr></thead>'
html += '<tbody>'
for _, row in df.iterrows():
energy_numeric = row['gpu_energy_numeric']
energy_str = f"{energy_numeric:.2f}"
# Compute the relative width (as a percentage)
bar_width = (energy_numeric / max_energy) * 100
score_val = row['energy_score']
bar_color = color_map.get(str(score_val), "gray")
html += '<tr>'
html += f'<td style="padding: 8px; width: {static_width}px;">{row["Model"]}</td>'
html += (
f'<td style="padding: 8px;">{energy_str}<br>'
f'<div style="background-color: {bar_color}; width: {bar_width:.1f}%; height: 10px;"></div></td>'
)
html += f'<td style="padding: 8px;">{row["Score"]}</td>'
html += '</tr>'
html += '</tbody></table>'
return html
# --- Function to zip all CSV files ---
def zip_csv_files():
data_dir = "data/energy"
zip_filename = "data.zip"
with zipfile.ZipFile(zip_filename, "w", zipfile.ZIP_DEFLATED) as zipf:
for filename in os.listdir(data_dir):
if filename.endswith(".csv"):
filepath = os.path.join(data_dir, filename)
zipf.write(filepath, arcname=filename)
return zip_filename
def get_zip_data_link():
"""Creates a data URI download link for the ZIP file."""
zip_filename = zip_csv_files()
with open(zip_filename, "rb") as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'<a href="data:application/zip;base64,{b64}" download="data.zip" style="margin: 0 15px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Download Data</a>'
return href
# --- Modified functions to include a sort_order parameter ---
def get_model_names_html(task, sort_order="Low to High"):
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['energy_score'] = df['energy_score'].astype(int)
# Convert kWh to Wh:
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
ascending = True if sort_order == "Low to High" else False
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
return generate_html_table_from_df(df)
def get_all_model_names_html(sort_order="Low to High"):
all_df = pd.DataFrame()
for task in tasks:
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['energy_score'] = df['energy_score'].astype(int)
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
all_df = pd.concat([all_df, df], ignore_index=True)
all_df = all_df.drop_duplicates(subset=['model'])
ascending = True if sort_order == "Low to High" else False
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
return generate_html_table_from_df(all_df)
def get_text_generation_model_names_html(model_class, sort_order="Low to High"):
df = pd.read_csv('data/energy/text_generation.csv')
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
if 'class' in df.columns:
df = df[df['class'] == model_class]
df['energy_score'] = df['energy_score'].astype(int)
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
ascending = True if sort_order == "Low to High" else False
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
return generate_html_table_from_df(df)
# --- Update functions for dropdown changes ---
# For Text Generation, two dropdowns: model class and sort order.
def update_text_generation(selected_display, sort_order):
mapping = {
"A (Single Consumer GPU) <20B parameters": "A",
"B (Single Cloud GPU) 20-66B parameters": "B",
"C (Multiple Cloud GPUs) >66B parameters": "C"
}
model_class = mapping.get(selected_display, "A")
return get_text_generation_model_names_html(model_class, sort_order)
# For the other tabs, each update function simply takes the sort_order.
def update_image_generation(sort_order):
return get_model_names_html('image_generation.csv', sort_order)
def update_text_classification(sort_order):
return get_model_names_html('text_classification.csv', sort_order)
def update_image_classification(sort_order):
return get_model_names_html('image_classification.csv', sort_order)
def update_image_captioning(sort_order):
return get_model_names_html('image_captioning.csv', sort_order)
def update_summarization(sort_order):
return get_model_names_html('summarization.csv', sort_order)
def update_asr(sort_order):
return get_model_names_html('asr.csv', sort_order)
def update_object_detection(sort_order):
return get_model_names_html('object_detection.csv', sort_order)
def update_sentence_similarity(sort_order):
return get_model_names_html('sentence_similarity.csv', sort_order)
def update_extractive_qa(sort_order):
return get_model_names_html('question_answering.csv', sort_order)
def update_all_tasks(sort_order):
return get_all_model_names_html(sort_order)
# --- Build the Gradio Interface ---
demo = gr.Blocks(css="""
.gr-dataframe table {
table-layout: fixed;
width: 100%;
}
.gr-dataframe th, .gr-dataframe td {
max-width: 150px;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
""")
with demo:
# Replace title with a centered logo and a centered subtitle.
gr.HTML('<div style="text-align: center;"><img src="/resolve/main/logo.png" alt="Logo"></div>')
gr.Markdown('<p style="text-align: center;">Welcome to the leaderboard for the <a href="https://huggingface.co/AIEnergyScore">AI Energy Score Project!</a> — Select different tasks to see scored models.</p>')
# Header links (using a row of components, including a Download Data link)
with gr.Row():
submission_link = gr.HTML('<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Submission Portal</a>')
label_link = gr.HTML('<a href="https://huggingface.co/spaces/AIEnergyScore/Label" style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Label Generator</a>')
faq_link = gr.HTML('<a href="https://huggingface.github.io/AIEnergyScore/#faq" style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em;">FAQ</a>')
documentation_link = gr.HTML('<a href="https://huggingface.github.io/AIEnergyScore/#documentation" style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Documentation</a>')
download_link = gr.HTML(get_zip_data_link())
community_link = gr.HTML('<a href="https://huggingface.co/spaces/AIEnergyScore/README/discussions" style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Community</a>')
with gr.Tabs():
# --- Text Generation Tab ---
with gr.TabItem("Text Generation 💬"):
with gr.Row():
model_class_options = [
"A (Single Consumer GPU) <20B parameters",
"B (Single Cloud GPU) 20-66B parameters",
"C (Multiple Cloud GPUs) >66B parameters"
]
model_class_dropdown = gr.Dropdown(
choices=model_class_options,
label="Select Model Class",
value=model_class_options[0]
)
sort_dropdown_tg = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
tg_table = gr.HTML(get_text_generation_model_names_html("A", "Low to High"))
# When either dropdown changes, update the table.
model_class_dropdown.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=tg_table)
sort_dropdown_tg.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=tg_table)
# --- Image Generation Tab ---
with gr.TabItem("Image Generation 📷"):
sort_dropdown_img = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
img_table = gr.HTML(get_model_names_html('image_generation.csv', "Low to High"))
sort_dropdown_img.change(fn=update_image_generation, inputs=sort_dropdown_img, outputs=img_table)
# --- Text Classification Tab ---
with gr.TabItem("Text Classification 🎭"):
sort_dropdown_tc = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
tc_table = gr.HTML(get_model_names_html('text_classification.csv', "Low to High"))
sort_dropdown_tc.change(fn=update_text_classification, inputs=sort_dropdown_tc, outputs=tc_table)
# --- Image Classification Tab ---
with gr.TabItem("Image Classification 🖼️"):
sort_dropdown_ic = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
ic_table = gr.HTML(get_model_names_html('image_classification.csv', "Low to High"))
sort_dropdown_ic.change(fn=update_image_classification, inputs=sort_dropdown_ic, outputs=ic_table)
# --- Image Captioning Tab ---
with gr.TabItem("Image Captioning 📝"):
sort_dropdown_icap = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
icap_table = gr.HTML(get_model_names_html('image_captioning.csv', "Low to High"))
sort_dropdown_icap.change(fn=update_image_captioning, inputs=sort_dropdown_icap, outputs=icap_table)
# --- Summarization Tab ---
with gr.TabItem("Summarization 📃"):
sort_dropdown_sum = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
sum_table = gr.HTML(get_model_names_html('summarization.csv', "Low to High"))
sort_dropdown_sum.change(fn=update_summarization, inputs=sort_dropdown_sum, outputs=sum_table)
# --- Automatic Speech Recognition Tab ---
with gr.TabItem("Automatic Speech Recognition 💬"):
sort_dropdown_asr = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
asr_table = gr.HTML(get_model_names_html('asr.csv', "Low to High"))
sort_dropdown_asr.change(fn=update_asr, inputs=sort_dropdown_asr, outputs=asr_table)
# --- Object Detection Tab ---
with gr.TabItem("Object Detection 🚘"):
sort_dropdown_od = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
od_table = gr.HTML(get_model_names_html('object_detection.csv', "Low to High"))
sort_dropdown_od.change(fn=update_object_detection, inputs=sort_dropdown_od, outputs=od_table)
# --- Sentence Similarity Tab ---
with gr.TabItem("Sentence Similarity 📚"):
sort_dropdown_ss = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
ss_table = gr.HTML(get_model_names_html('sentence_similarity.csv', "Low to High"))
sort_dropdown_ss.change(fn=update_sentence_similarity, inputs=sort_dropdown_ss, outputs=ss_table)
# --- Extractive QA Tab ---
with gr.TabItem("Extractive QA ❔"):
sort_dropdown_qa = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
qa_table = gr.HTML(get_model_names_html('question_answering.csv', "Low to High"))
sort_dropdown_qa.change(fn=update_extractive_qa, inputs=sort_dropdown_qa, outputs=qa_table)
# --- All Tasks Tab ---
with gr.TabItem("All Tasks 💡"):
sort_dropdown_all = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
all_table = gr.HTML(get_all_model_names_html("Low to High"))
sort_dropdown_all.change(fn=update_all_tasks, inputs=sort_dropdown_all, outputs=all_table)
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=10,
show_copy_button=True,
)
gr.Markdown("""Last updated: February 2025""")
demo.launch()