File size: 16,918 Bytes
460fdc7
 
bff1996
 
49e7f66
42e8f64
c40907d
2ec9b03
4f8bac4
2ec9b03
 
4f8bac4
2ec9b03
4f8bac4
 
0a8b643
4f8bac4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec5fd05
c3f4f1f
4f8bac4
 
 
 
c3f4f1f
 
ec5fd05
 
 
 
 
 
 
 
 
c3f4f1f
 
ec5fd05
 
 
 
 
 
c3f4f1f
ec5fd05
 
 
 
 
 
 
 
c3f4f1f
dd0d99f
 
ec5fd05
dd0d99f
 
 
ec5fd05
c3f4f1f
 
 
 
ec5fd05
 
c3f4f1f
 
 
 
ec5fd05
 
 
 
 
c3f4f1f
 
 
828c71e
22ec62d
ec5fd05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab1e3f0
22ec62d
 
 
 
ec5fd05
c3f4f1f
22ec62d
 
ec5fd05
b3f5a49
c3f4f1f
22ec62d
ab1e3f0
22ec62d
 
 
c3f4f1f
 
22ec62d
c3f4f1f
 
 
22ec62d
 
ec5fd05
b3f5a49
c3f4f1f
22ec62d
ec5fd05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3f4f1f
ec5fd05
4567668
 
 
 
 
 
 
 
 
 
 
 
f7b4006
7022131
ec5fd05
8069fa8
ec5fd05
 
 
 
 
 
 
 
 
 
88fbc65
f7b4006
ec5fd05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296b387
b3f5a49
 
 
ab1e3f0
b3f5a49
ab1e3f0
b3f5a49
 
40e7d39
4f8bac4
 
 
 
 
 
 
88fbc65
4f8bac4
ec5fd05
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import gradio as gr
import pandas as pd
import os
import zipfile
import base64

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
    author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
    title = {AI Energy Score Leaderboard - February 2025},
    year = {2025},
    publisher = {Hugging Face},
    howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""

# List of tasks (CSV filenames)
tasks = [
    'asr.csv',
    'object_detection.csv',
    'text_classification.csv',
    'image_captioning.csv',
    'question_answering.csv',
    'text_generation.csv',
    'image_classification.csv',
    'sentence_similarity.csv',
    'image_generation.csv',
    'summarization.csv'
]

def format_stars(score):
    try:
        score_int = int(score)
    except Exception:
        score_int = 0
    # Render stars in black with a slightly larger font.
    return f'<span style="color: black; font-size:1.5em;">{"★" * score_int}</span>'

def make_link(mname):
    parts = str(mname).split('/')
    display_name = parts[1] if len(parts) > 1 else mname
    return f'<a href="https://huggingface.co/{mname}" target="_blank">{display_name}</a>'

def extract_link_text(html_link):
    """Extracts the inner text from an HTML link."""
    start = html_link.find('>') + 1
    end = html_link.rfind('</a>')
    if start > 0 and end > start:
        return html_link[start:end]
    else:
        return html_link

def generate_html_table_from_df(df):
    """
    Given a dataframe with a numeric energy column (gpu_energy_numeric),
    generate an HTML table with three columns:
      - Model (the link, with a fixed width based on the longest model name)
      - GPU Energy (Wh) plus a horizontal bar whose width is proportional
        to the energy value relative to the maximum in the table.
      - Score (displayed as stars)
    """
    # Compute a static width (in pixels) for the Model column based on the longest model name.
    if not df.empty:
        max_length = max(len(extract_link_text(link)) for link in df['Model'])
    else:
        max_length = 10
    # Multiply by an estimated average character width (10 pixels) and add some extra padding.
    static_width = max_length * 10 + 16

    max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1
    color_map = {"1": "black", "2": "black", "3": "black", "4": "black", "5": "black"}
    html = '<table style="width:100%; border-collapse: collapse; font-family: Inter, sans-serif;">'
    # Keep only one header (the one with hover text)
    html += '<thead><tr style="background-color: #f2f2f2;">'
    html += '<th style="text-align: left; padding: 8px;" title="Model name with link to Hugging Face">Model</th>'
    html += '<th style="text-align: left; padding: 8px;" title="GPU energy consumed in Watt-hours for 1,000 queries">GPU Energy (Wh)</th>'
    html += '<th style="text-align: left; padding: 8px;" title="5 is most efficient, 1 is least. Relative energy efficiency score relative to other models in task/class at the time of leaderboard launch">Score</th>'
    html += '</tr></thead>'
    html += '<tbody>'
    for _, row in df.iterrows():
        energy_numeric = row['gpu_energy_numeric']
        energy_str = f"{energy_numeric:.2f}"
        # Compute the relative width (as a percentage)
        bar_width = (energy_numeric / max_energy) * 100
        score_val = row['energy_score']
        bar_color = color_map.get(str(score_val), "gray")
        html += '<tr>'
        html += f'<td style="padding: 8px; width: {static_width}px;">{row["Model"]}</td>'
        html += (
            f'<td style="padding: 8px;">{energy_str}<br>'
            f'<div style="background-color: {bar_color}; width: {bar_width:.1f}%; height: 10px;"></div></td>'
        )
        html += f'<td style="padding: 8px;">{row["Score"]}</td>'
        html += '</tr>'
    html += '</tbody></table>'
    return html

# --- Function to zip all CSV files ---
def zip_csv_files():
    data_dir = "data/energy"
    zip_filename = "data.zip"
    with zipfile.ZipFile(zip_filename, "w", zipfile.ZIP_DEFLATED) as zipf:
        for filename in os.listdir(data_dir):
            if filename.endswith(".csv"):
                filepath = os.path.join(data_dir, filename)
                zipf.write(filepath, arcname=filename)
    return zip_filename

def get_zip_data_link():
    """Creates a data URI download link for the ZIP file."""
    zip_filename = zip_csv_files()
    with open(zip_filename, "rb") as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    href = f'<a href="data:application/zip;base64,{b64}" download="data.zip" style="margin: 0 15px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Download Data</a>'
    return href

# --- Modified functions to include a sort_order parameter ---
def get_model_names_html(task, sort_order="Low to High"):
    df = pd.read_csv('data/energy/' + task)
    if df.columns[0].startswith("Unnamed:"):
        df = df.iloc[:, 1:]
    df['energy_score'] = df['energy_score'].astype(int)
    # Convert kWh to Wh:
    df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
    df['Model'] = df['model'].apply(make_link)
    df['Score'] = df['energy_score'].apply(format_stars)
    ascending = True if sort_order == "Low to High" else False
    df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
    return generate_html_table_from_df(df)

def get_all_model_names_html(sort_order="Low to High"):
    all_df = pd.DataFrame()
    for task in tasks:
        df = pd.read_csv('data/energy/' + task)
        if df.columns[0].startswith("Unnamed:"):
            df = df.iloc[:, 1:]
        df['energy_score'] = df['energy_score'].astype(int)
        df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
        df['Model'] = df['model'].apply(make_link)
        df['Score'] = df['energy_score'].apply(format_stars)
        all_df = pd.concat([all_df, df], ignore_index=True)
    all_df = all_df.drop_duplicates(subset=['model'])
    ascending = True if sort_order == "Low to High" else False
    all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
    return generate_html_table_from_df(all_df)

def get_text_generation_model_names_html(model_class, sort_order="Low to High"):
    df = pd.read_csv('data/energy/text_generation.csv')
    if df.columns[0].startswith("Unnamed:"):
        df = df.iloc[:, 1:]
    if 'class' in df.columns:
        df = df[df['class'] == model_class]
    df['energy_score'] = df['energy_score'].astype(int)
    df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
    df['Model'] = df['model'].apply(make_link)
    df['Score'] = df['energy_score'].apply(format_stars)
    ascending = True if sort_order == "Low to High" else False
    df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
    return generate_html_table_from_df(df)

# --- Update functions for dropdown changes ---

# For Text Generation, two dropdowns: model class and sort order.
def update_text_generation(selected_display, sort_order):
    mapping = {
        "A (Single Consumer GPU) <20B parameters": "A",
        "B (Single Cloud GPU) 20-66B parameters": "B",
        "C (Multiple Cloud GPUs) >66B parameters": "C"
    }
    model_class = mapping.get(selected_display, "A")
    return get_text_generation_model_names_html(model_class, sort_order)

# For the other tabs, each update function simply takes the sort_order.
def update_image_generation(sort_order):
    return get_model_names_html('image_generation.csv', sort_order)

def update_text_classification(sort_order):
    return get_model_names_html('text_classification.csv', sort_order)

def update_image_classification(sort_order):
    return get_model_names_html('image_classification.csv', sort_order)

def update_image_captioning(sort_order):
    return get_model_names_html('image_captioning.csv', sort_order)

def update_summarization(sort_order):
    return get_model_names_html('summarization.csv', sort_order)

def update_asr(sort_order):
    return get_model_names_html('asr.csv', sort_order)

def update_object_detection(sort_order):
    return get_model_names_html('object_detection.csv', sort_order)

def update_sentence_similarity(sort_order):
    return get_model_names_html('sentence_similarity.csv', sort_order)

def update_extractive_qa(sort_order):
    return get_model_names_html('question_answering.csv', sort_order)

def update_all_tasks(sort_order):
    return get_all_model_names_html(sort_order)

# --- Build the Gradio Interface ---

demo = gr.Blocks(css="""
.gr-dataframe table {
    table-layout: fixed;
    width: 100%;
}
.gr-dataframe th, .gr-dataframe td {
    max-width: 150px;
    white-space: nowrap;
    overflow: hidden;
    text-overflow: ellipsis;
}
""")

with demo:
    # Replace title with a centered logo and a centered subtitle.
    gr.HTML('<div style="text-align: center;"><img src="/resolve/main/logo.png" alt="Logo"></div>')
    gr.Markdown('<p style="text-align: center;">Welcome to the leaderboard for the <a href="https://huggingface.co/AIEnergyScore">AI Energy Score Project!</a> — Select different tasks to see scored models.</p>')
    
    # Header links (using a row of components, including a Download Data link)
    with gr.Row():
        submission_link = gr.HTML('<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Submission Portal</a>')
        label_link = gr.HTML('<a href="https://huggingface.co/spaces/AIEnergyScore/Label" style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Label Generator</a>')
        faq_link = gr.HTML('<a href="https://huggingface.github.io/AIEnergyScore/#faq" style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em;">FAQ</a>')
        documentation_link = gr.HTML('<a href="https://huggingface.github.io/AIEnergyScore/#documentation" style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Documentation</a>')
        download_link = gr.HTML(get_zip_data_link())
        community_link = gr.HTML('<a href="https://huggingface.co/spaces/AIEnergyScore/README/discussions" style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Community</a>')
    
    with gr.Tabs():
        # --- Text Generation Tab ---
        with gr.TabItem("Text Generation 💬"):
            with gr.Row():
                model_class_options = [
                    "A (Single Consumer GPU) <20B parameters",
                    "B (Single Cloud GPU) 20-66B parameters",
                    "C (Multiple Cloud GPUs) >66B parameters"
                ]
                model_class_dropdown = gr.Dropdown(
                    choices=model_class_options,
                    label="Select Model Class",
                    value=model_class_options[0]
                )
                sort_dropdown_tg = gr.Dropdown(
                    choices=["Low to High", "High to Low"],
                    label="Sort",
                    value="Low to High"
                )
            tg_table = gr.HTML(get_text_generation_model_names_html("A", "Low to High"))
            # When either dropdown changes, update the table.
            model_class_dropdown.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=tg_table)
            sort_dropdown_tg.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=tg_table)
        
        # --- Image Generation Tab ---
        with gr.TabItem("Image Generation 📷"):
            sort_dropdown_img = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            img_table = gr.HTML(get_model_names_html('image_generation.csv', "Low to High"))
            sort_dropdown_img.change(fn=update_image_generation, inputs=sort_dropdown_img, outputs=img_table)
        
        # --- Text Classification Tab ---
        with gr.TabItem("Text Classification 🎭"):
            sort_dropdown_tc = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            tc_table = gr.HTML(get_model_names_html('text_classification.csv', "Low to High"))
            sort_dropdown_tc.change(fn=update_text_classification, inputs=sort_dropdown_tc, outputs=tc_table)
        
        # --- Image Classification Tab ---
        with gr.TabItem("Image Classification 🖼️"):
            sort_dropdown_ic = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            ic_table = gr.HTML(get_model_names_html('image_classification.csv', "Low to High"))
            sort_dropdown_ic.change(fn=update_image_classification, inputs=sort_dropdown_ic, outputs=ic_table)
        
        # --- Image Captioning Tab ---
        with gr.TabItem("Image Captioning 📝"):
            sort_dropdown_icap = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            icap_table = gr.HTML(get_model_names_html('image_captioning.csv', "Low to High"))
            sort_dropdown_icap.change(fn=update_image_captioning, inputs=sort_dropdown_icap, outputs=icap_table)
        
        # --- Summarization Tab ---
        with gr.TabItem("Summarization 📃"):
            sort_dropdown_sum = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            sum_table = gr.HTML(get_model_names_html('summarization.csv', "Low to High"))
            sort_dropdown_sum.change(fn=update_summarization, inputs=sort_dropdown_sum, outputs=sum_table)
        
        # --- Automatic Speech Recognition Tab ---
        with gr.TabItem("Automatic Speech Recognition 💬"):
            sort_dropdown_asr = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            asr_table = gr.HTML(get_model_names_html('asr.csv', "Low to High"))
            sort_dropdown_asr.change(fn=update_asr, inputs=sort_dropdown_asr, outputs=asr_table)
        
        # --- Object Detection Tab ---
        with gr.TabItem("Object Detection 🚘"):
            sort_dropdown_od = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            od_table = gr.HTML(get_model_names_html('object_detection.csv', "Low to High"))
            sort_dropdown_od.change(fn=update_object_detection, inputs=sort_dropdown_od, outputs=od_table)
        
        # --- Sentence Similarity Tab ---
        with gr.TabItem("Sentence Similarity 📚"):
            sort_dropdown_ss = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            ss_table = gr.HTML(get_model_names_html('sentence_similarity.csv', "Low to High"))
            sort_dropdown_ss.change(fn=update_sentence_similarity, inputs=sort_dropdown_ss, outputs=ss_table)
        
        # --- Extractive QA Tab ---
        with gr.TabItem("Extractive QA ❔"):
            sort_dropdown_qa = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            qa_table = gr.HTML(get_model_names_html('question_answering.csv', "Low to High"))
            sort_dropdown_qa.change(fn=update_extractive_qa, inputs=sort_dropdown_qa, outputs=qa_table)
        
        # --- All Tasks Tab ---
        with gr.TabItem("All Tasks 💡"):
            sort_dropdown_all = gr.Dropdown(
                choices=["Low to High", "High to Low"],
                label="Sort",
                value="Low to High"
            )
            all_table = gr.HTML(get_all_model_names_html("Low to High"))
            sort_dropdown_all.change(fn=update_all_tasks, inputs=sort_dropdown_all, outputs=all_table)
    
    with gr.Accordion("📙 Citation", open=False):
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            elem_id="citation-button",
            lines=10,
            show_copy_button=True,
        )
    gr.Markdown("""Last updated: February 2025""")

demo.launch()