Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -24,103 +24,101 @@ tasks = [
|
|
24 |
'summarization.csv'
|
25 |
]
|
26 |
|
27 |
-
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"} # Keep color map
|
28 |
-
|
29 |
def format_stars(score):
|
30 |
try:
|
31 |
score_int = int(score)
|
32 |
except Exception:
|
33 |
score_int = 0
|
34 |
# Render stars in black with a slightly larger font
|
35 |
-
return f'<span style="color: black
|
36 |
|
37 |
def make_link(mname):
|
38 |
parts = str(mname).split('/')
|
39 |
display_name = parts[1] if len(parts) > 1 else mname
|
40 |
-
return f'
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
return html
|
57 |
|
58 |
-
|
59 |
-
def get_model_names(task):
|
60 |
df = pd.read_csv('data/energy/' + task)
|
61 |
if df.columns[0].startswith("Unnamed:"):
|
62 |
df = df.iloc[:, 1:]
|
63 |
-
|
64 |
df['energy_score'] = df['energy_score'].astype(int)
|
65 |
-
|
66 |
-
df = df.sort_values(by='total_gpu_energy') # Sort BEFORE creating HTML column
|
67 |
-
max_energy_for_task = df['total_gpu_energy'].max() # Calculate max energy for this task
|
68 |
-
|
69 |
-
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_task
|
70 |
-
df['GPU Energy (Wh)'] = df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_for_task), axis=1)
|
71 |
-
|
72 |
df['Model'] = df['model'].apply(make_link)
|
73 |
df['Score'] = df['energy_score'].apply(format_stars)
|
74 |
-
df = df
|
75 |
-
return df
|
76 |
|
77 |
-
def
|
78 |
all_df = pd.DataFrame()
|
79 |
-
max_energy_overall = 0 # Initialize overall max energy
|
80 |
for task in tasks:
|
81 |
df = pd.read_csv('data/energy/' + task)
|
82 |
-
df[
|
|
|
83 |
df['energy_score'] = df['energy_score'].astype(int)
|
|
|
|
|
|
|
84 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
85 |
-
|
86 |
all_df = all_df.drop_duplicates(subset=['model'])
|
87 |
-
all_df = all_df.sort_values(by='
|
88 |
-
|
89 |
-
max_energy_overall = all_df['total_gpu_energy'].max() # Calculate overall max AFTER sorting
|
90 |
-
|
91 |
-
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_overall
|
92 |
-
all_df['GPU Energy (Wh)'] = all_df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_overall), axis=1)
|
93 |
-
all_df['Model'] = all_df['model'].apply(make_link)
|
94 |
-
all_df['Score'] = all_df['energy_score'].apply(format_stars)
|
95 |
-
all_df = all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
96 |
-
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
97 |
|
98 |
-
|
99 |
-
def get_text_generation_model_names(model_class):
|
100 |
df = pd.read_csv('data/energy/text_generation.csv')
|
101 |
if df.columns[0].startswith("Unnamed:"):
|
102 |
df = df.iloc[:, 1:]
|
103 |
if 'class' in df.columns:
|
104 |
df = df[df['class'] == model_class]
|
105 |
-
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 # kWh to Wh conversion
|
106 |
df['energy_score'] = df['energy_score'].astype(int)
|
107 |
-
|
108 |
-
df = df.sort_values(by='total_gpu_energy') # Sort BEFORE creating HTML column
|
109 |
-
max_energy_for_class = df['total_gpu_energy'].max() # Calculate max energy for this class
|
110 |
-
|
111 |
-
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_class
|
112 |
-
df['GPU Energy (Wh)'] = df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_for_class), axis=1)
|
113 |
-
|
114 |
df['Model'] = df['model'].apply(make_link)
|
115 |
df['Score'] = df['energy_score'].apply(format_stars)
|
116 |
-
df = df
|
117 |
-
return df
|
118 |
|
119 |
def update_text_generation(model_class):
|
120 |
-
|
121 |
-
return
|
122 |
|
123 |
-
# --- Build the Gradio Interface
|
124 |
|
125 |
demo = gr.Blocks(css="""
|
126 |
.gr-dataframe table {
|
@@ -133,25 +131,6 @@ demo = gr.Blocks(css="""
|
|
133 |
overflow: hidden;
|
134 |
text-overflow: ellipsis;
|
135 |
}
|
136 |
-
/* CSS for minimal bar chart inside table cell - more specific CSS */
|
137 |
-
.gr-dataframe td > .minimal-bar-container { /* Target minimal-bar-container WITHIN dataframe cells */
|
138 |
-
display: flex;
|
139 |
-
align-items: center;
|
140 |
-
gap: 5px;
|
141 |
-
margin: 0; /* Reset margins */
|
142 |
-
padding: 0; /* Reset paddings */
|
143 |
-
line-height: normal; /* Reset line-height */
|
144 |
-
}
|
145 |
-
.gr-dataframe td > .minimal-bar-container > .minimal-bar { /* Target minimal-bar WITHIN container in dataframe cells */
|
146 |
-
height: 10px;
|
147 |
-
background-color: blue; /* default, will be overridden by dynamic color */
|
148 |
-
border-radius: 2px;
|
149 |
-
}
|
150 |
-
.gr-dataframe td > .minimal-bar-container > span { /* Target span for text value in dataframe cells */
|
151 |
-
font-size: 0.9em; /* Adjust text size if needed */
|
152 |
-
color: #333; /* Adjust text color if needed */
|
153 |
-
}
|
154 |
-
|
155 |
""")
|
156 |
|
157 |
with demo:
|
@@ -164,45 +143,43 @@ Select different tasks to see scored models. Submit open models for testing and
|
|
164 |
with gr.Tabs():
|
165 |
# --- Text Generation Tab with Dropdown for Model Class ---
|
166 |
with gr.TabItem("Text Generation 💬"):
|
167 |
-
# Dropdown moved above the leaderboard
|
168 |
model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"],
|
169 |
label="Select Model Class",
|
170 |
value="A")
|
171 |
-
tg_table = gr.
|
172 |
-
# Update table when the dropdown value changes
|
173 |
model_class_dropdown.change(fn=update_text_generation,
|
174 |
inputs=model_class_dropdown,
|
175 |
-
outputs=
|
176 |
|
177 |
with gr.TabItem("Image Generation 📷"):
|
178 |
-
|
179 |
|
180 |
with gr.TabItem("Text Classification 🎭"):
|
181 |
-
|
182 |
|
183 |
with gr.TabItem("Image Classification 🖼️"):
|
184 |
-
|
185 |
|
186 |
with gr.TabItem("Image Captioning 📝"):
|
187 |
-
|
188 |
|
189 |
with gr.TabItem("Summarization 📃"):
|
190 |
-
|
191 |
|
192 |
with gr.TabItem("Automatic Speech Recognition 💬"):
|
193 |
-
|
194 |
|
195 |
with gr.TabItem("Object Detection 🚘"):
|
196 |
-
|
197 |
|
198 |
with gr.TabItem("Sentence Similarity 📚"):
|
199 |
-
|
200 |
|
201 |
with gr.TabItem("Extractive QA ❔"):
|
202 |
-
|
203 |
|
204 |
with gr.TabItem("All Tasks 💡"):
|
205 |
-
|
206 |
|
207 |
with gr.Accordion("📙 Citation", open=False):
|
208 |
citation_button = gr.Textbox(
|
@@ -216,4 +193,4 @@ Select different tasks to see scored models. Submit open models for testing and
|
|
216 |
"""Last updated: February 2025"""
|
217 |
)
|
218 |
|
219 |
-
demo.launch(
|
|
|
24 |
'summarization.csv'
|
25 |
]
|
26 |
|
|
|
|
|
27 |
def format_stars(score):
|
28 |
try:
|
29 |
score_int = int(score)
|
30 |
except Exception:
|
31 |
score_int = 0
|
32 |
# Render stars in black with a slightly larger font
|
33 |
+
return f'<span style="color: black; font-size:1.5em;">{"★" * score_int}</span>'
|
34 |
|
35 |
def make_link(mname):
|
36 |
parts = str(mname).split('/')
|
37 |
display_name = parts[1] if len(parts) > 1 else mname
|
38 |
+
return f'<a href="https://huggingface.co/{mname}" target="_blank">{display_name}</a>'
|
39 |
+
|
40 |
+
def generate_html_table_from_df(df):
|
41 |
+
"""
|
42 |
+
Given a dataframe that already includes:
|
43 |
+
- 'gpu_energy_numeric': numeric energy (in Wh)
|
44 |
+
- 'Model': the model link HTML,
|
45 |
+
- 'Score': the HTML stars,
|
46 |
+
- and 'energy_score' as an integer,
|
47 |
+
generate an HTML table that shows the energy value plus a horizontal bar whose width is computed
|
48 |
+
relative to the maximum energy.
|
49 |
+
"""
|
50 |
+
max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1
|
51 |
+
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
52 |
+
html = '<table style="width:100%; border-collapse: collapse; font-family: Arial, sans-serif;">'
|
53 |
+
html += '<thead><tr style="background-color: #f2f2f2;">'
|
54 |
+
html += '<th style="text-align: left; padding: 8px;">Model</th>'
|
55 |
+
html += '<th style="text-align: left; padding: 8px;">GPU Energy (Wh)</th>'
|
56 |
+
html += '<th style="text-align: left; padding: 8px;">Score</th>'
|
57 |
+
html += '</tr></thead>'
|
58 |
+
html += '<tbody>'
|
59 |
+
for _, row in df.iterrows():
|
60 |
+
energy_numeric = row['gpu_energy_numeric']
|
61 |
+
energy_str = f"{energy_numeric:.4f}"
|
62 |
+
# Compute the relative width (as a percentage) for the horizontal bar
|
63 |
+
bar_width = (energy_numeric / max_energy) * 100
|
64 |
+
score_val = row['energy_score']
|
65 |
+
bar_color = color_map.get(str(score_val), "gray")
|
66 |
+
html += '<tr>'
|
67 |
+
html += f'<td style="padding: 8px;">{row["Model"]}</td>'
|
68 |
+
html += (
|
69 |
+
f'<td style="padding: 8px;">{energy_str}<br>'
|
70 |
+
f'<div style="background-color: {bar_color}; width: {bar_width:.1f}%; height: 10px;"></div></td>'
|
71 |
+
)
|
72 |
+
html += f'<td style="padding: 8px;">{row["Score"]}</td>'
|
73 |
+
html += '</tr>'
|
74 |
+
html += '</tbody></table>'
|
75 |
return html
|
76 |
|
77 |
+
def get_model_names_html(task):
|
|
|
78 |
df = pd.read_csv('data/energy/' + task)
|
79 |
if df.columns[0].startswith("Unnamed:"):
|
80 |
df = df.iloc[:, 1:]
|
81 |
+
# Convert energy_score to integer and total_gpu_energy from kWh to Wh
|
82 |
df['energy_score'] = df['energy_score'].astype(int)
|
83 |
+
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
df['Model'] = df['model'].apply(make_link)
|
85 |
df['Score'] = df['energy_score'].apply(format_stars)
|
86 |
+
df = df.sort_values(by='gpu_energy_numeric')
|
87 |
+
return generate_html_table_from_df(df)
|
88 |
|
89 |
+
def get_all_model_names_html():
|
90 |
all_df = pd.DataFrame()
|
|
|
91 |
for task in tasks:
|
92 |
df = pd.read_csv('data/energy/' + task)
|
93 |
+
if df.columns[0].startswith("Unnamed:"):
|
94 |
+
df = df.iloc[:, 1:]
|
95 |
df['energy_score'] = df['energy_score'].astype(int)
|
96 |
+
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
97 |
+
df['Model'] = df['model'].apply(make_link)
|
98 |
+
df['Score'] = df['energy_score'].apply(format_stars)
|
99 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
|
|
100 |
all_df = all_df.drop_duplicates(subset=['model'])
|
101 |
+
all_df = all_df.sort_values(by='gpu_energy_numeric')
|
102 |
+
return generate_html_table_from_df(all_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
def get_text_generation_model_names_html(model_class):
|
|
|
105 |
df = pd.read_csv('data/energy/text_generation.csv')
|
106 |
if df.columns[0].startswith("Unnamed:"):
|
107 |
df = df.iloc[:, 1:]
|
108 |
if 'class' in df.columns:
|
109 |
df = df[df['class'] == model_class]
|
|
|
110 |
df['energy_score'] = df['energy_score'].astype(int)
|
111 |
+
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
df['Model'] = df['model'].apply(make_link)
|
113 |
df['Score'] = df['energy_score'].apply(format_stars)
|
114 |
+
df = df.sort_values(by='gpu_energy_numeric')
|
115 |
+
return generate_html_table_from_df(df)
|
116 |
|
117 |
def update_text_generation(model_class):
|
118 |
+
table_html = get_text_generation_model_names_html(model_class)
|
119 |
+
return table_html
|
120 |
|
121 |
+
# --- Build the Gradio Interface ---
|
122 |
|
123 |
demo = gr.Blocks(css="""
|
124 |
.gr-dataframe table {
|
|
|
131 |
overflow: hidden;
|
132 |
text-overflow: ellipsis;
|
133 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
""")
|
135 |
|
136 |
with demo:
|
|
|
143 |
with gr.Tabs():
|
144 |
# --- Text Generation Tab with Dropdown for Model Class ---
|
145 |
with gr.TabItem("Text Generation 💬"):
|
|
|
146 |
model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"],
|
147 |
label="Select Model Class",
|
148 |
value="A")
|
149 |
+
tg_table = gr.HTML(get_text_generation_model_names_html("A"))
|
|
|
150 |
model_class_dropdown.change(fn=update_text_generation,
|
151 |
inputs=model_class_dropdown,
|
152 |
+
outputs=tg_table)
|
153 |
|
154 |
with gr.TabItem("Image Generation 📷"):
|
155 |
+
gr.HTML(get_model_names_html('image_generation.csv'))
|
156 |
|
157 |
with gr.TabItem("Text Classification 🎭"):
|
158 |
+
gr.HTML(get_model_names_html('text_classification.csv'))
|
159 |
|
160 |
with gr.TabItem("Image Classification 🖼️"):
|
161 |
+
gr.HTML(get_model_names_html('image_classification.csv'))
|
162 |
|
163 |
with gr.TabItem("Image Captioning 📝"):
|
164 |
+
gr.HTML(get_model_names_html('image_captioning.csv'))
|
165 |
|
166 |
with gr.TabItem("Summarization 📃"):
|
167 |
+
gr.HTML(get_model_names_html('summarization.csv'))
|
168 |
|
169 |
with gr.TabItem("Automatic Speech Recognition 💬"):
|
170 |
+
gr.HTML(get_model_names_html('asr.csv'))
|
171 |
|
172 |
with gr.TabItem("Object Detection 🚘"):
|
173 |
+
gr.HTML(get_model_names_html('object_detection.csv'))
|
174 |
|
175 |
with gr.TabItem("Sentence Similarity 📚"):
|
176 |
+
gr.HTML(get_model_names_html('sentence_similarity.csv'))
|
177 |
|
178 |
with gr.TabItem("Extractive QA ❔"):
|
179 |
+
gr.HTML(get_model_names_html('question_answering.csv'))
|
180 |
|
181 |
with gr.TabItem("All Tasks 💡"):
|
182 |
+
gr.HTML(get_all_model_names_html())
|
183 |
|
184 |
with gr.Accordion("📙 Citation", open=False):
|
185 |
citation_button = gr.Textbox(
|
|
|
193 |
"""Last updated: February 2025"""
|
194 |
)
|
195 |
|
196 |
+
demo.launch()
|