bgamazay's picture
Update app.py
828c71e verified
raw
history blame
9.36 kB
import gradio as gr
import pandas as pd
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
title = {AI Energy Score Leaderboard - February 2025},
year = {2025},
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""
# List of tasks (CSV filenames)
tasks = [
'asr.csv',
'object_detection.csv',
'text_classification.csv',
'image_captioning.csv',
'question_answering.csv',
'text_generation.csv',
'image_classification.csv',
'sentence_similarity.csv',
'image_generation.csv',
'summarization.csv'
]
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"} # Keep color map
def format_stars(score):
try:
score_int = int(score)
except Exception:
score_int = 0
# Render stars in black with a slightly larger font
return f'<span style="color: black !important; font-size:1.5em !important;">{"★" * score_int}</span>'
def make_link(mname):
parts = str(mname).split('/')
display_name = parts[1] if len(parts) > 1 else mname
return f'[{display_name}](https://huggingface.co/{mname})'
# --- Leaderboard Table Functions (Modified to dynamically calculate max energy) ---
def create_minimal_bar_html(energy_value_wh, energy_score, max_energy_value):
"""Generates HTML for the minimal bar chart with dynamic max energy."""
if max_energy_value <= 0: # Avoid division by zero if max energy is 0 or negative
bar_percentage = 0
else:
bar_percentage = min(100, (energy_value_wh / max_energy_value) * 100) # Cap at 100%
bar_color = color_map.get(str(energy_score), "gray") # Default color if score is unexpected
html = f"""
<div style="display: flex; align-items: center; gap: 5px;">
<div style="width: {bar_percentage}%; height: 10px; background-color: {bar_color}; border-radius: 2px;"></div>
<span>{energy_value_wh:.4f} Wh</span>
</div>
"""
return html
def get_model_names(task):
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 # kWh to Wh conversion
df['energy_score'] = df['energy_score'].astype(int)
max_energy_for_task = df['total_gpu_energy'].max() # Calculate max energy for this task
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_task
df['GPU Energy (Wh)'] = df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_for_task), axis=1)
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
df = df[['Model', 'GPU Energy (Wh)', 'Score']] # Keep only these columns
df = df.sort_values(by='total_gpu_energy') # Sort by underlying energy value for table order
df = df.drop('total_gpu_energy', axis=1) # remove the original energy column that was used for sorting
return df
def get_all_model_names():
all_df = pd.DataFrame()
max_energy_overall = 0 # Initialize overall max energy
for task in tasks:
df = pd.read_csv('data/energy/' + task)
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 # kWh to Wh conversion
df['energy_score'] = df['energy_score'].astype(int)
max_energy_overall = max(max_energy_overall, df['total_gpu_energy'].max()) # Update overall max
all_df = pd.concat([all_df, df], ignore_index=True)
all_df = all_df.drop_duplicates(subset=['model'])
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_overall
all_df['GPU Energy (Wh)'] = all_df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_overall), axis=1)
all_df['Model'] = all_df['model'].apply(make_link)
all_df['Score'] = all_df['energy_score'].apply(format_stars)
all_df = all_df.sort_values(by='total_gpu_energy') # Sort by underlying energy value for table order
all_df = all_df.drop('total_gpu_energy', axis=1) # remove the original energy column that was used for sorting
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
def get_text_generation_model_names(model_class):
df = pd.read_csv('data/energy/text_generation.csv')
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
if 'class' in df.columns:
df = df[df['class'] == model_class]
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 # kWh to Wh conversion
df['energy_score'] = df['energy_score'].astype(int)
max_energy_for_class = df['total_gpu_energy'].max() # Calculate max energy for this class
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_class
df['GPU Energy (Wh)'] = df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_for_class), axis=1)
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
df = df[['Model', 'GPU Energy (Wh)', 'Score']] # Keep only these columns
df = df.sort_values(by='total_gpu_energy') # Sort by underlying energy value for table order
df = df.drop('total_gpu_energy', axis=1) # remove the original energy column that was used for sorting
return df
def update_text_generation(model_class):
table = get_text_generation_model_names(model_class)
return table
# --- Build the Gradio Interface (Plots Removed, Tables with Dynamic Bars) ---
demo = gr.Blocks(css="""
.gr-dataframe table {
table-layout: fixed;
width: 100%;
}
.gr-dataframe th, .gr-dataframe td {
max-width: 150px;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
/* CSS for minimal bar chart inside table cell */
.minimal-bar-container {
display: flex;
align-items: center;
gap: 5px; /* space between bar and text */
}
.minimal-bar {
height: 10px;
background-color: blue; /* default, will be overridden by dynamic color */
border-radius: 2px;
}
""")
with demo:
gr.Markdown(
"""# AI Energy Score Leaderboard
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore)
Select different tasks to see scored models. Submit open models for testing and learn about testing proprietary models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)"""
)
with gr.Tabs():
# --- Text Generation Tab with Dropdown for Model Class ---
with gr.TabItem("Text Generation 💬"):
# Dropdown moved above the leaderboard
model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"],
label="Select Model Class",
value="A")
tg_table = gr.Dataframe(get_text_generation_model_names("A"), datatype="markdown") # No plot anymore
# Update table when the dropdown value changes
model_class_dropdown.change(fn=update_text_generation,
inputs=model_class_dropdown,
outputs=[tg_table])
with gr.TabItem("Image Generation 📷"):
table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown")
with gr.TabItem("Text Classification 🎭"):
table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown")
with gr.TabItem("Image Classification 🖼️"):
table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown")
with gr.TabItem("Image Captioning 📝"):
table = gr.Dataframe(get_model_names('image_captioning.csv'), datatype="markdown")
with gr.TabItem("Summarization 📃"):
table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown")
with gr.TabItem("Automatic Speech Recognition 💬"):
table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown")
with gr.TabItem("Object Detection 🚘"):
table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown")
with gr.TabItem("Sentence Similarity 📚"):
table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown")
with gr.TabItem("Extractive QA ❔"):
table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown")
with gr.TabItem("All Tasks 💡"):
table = gr.Dataframe(get_all_model_names(), datatype="markdown")
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=10,
show_copy_button=True,
)
gr.Markdown(
"""Last updated: February 2025"""
)
demo.launch()