Spaces:
Sleeping
Sleeping
File size: 9,357 Bytes
460fdc7 42e8f64 c40907d 2ec9b03 4f8bac4 2ec9b03 4f8bac4 2ec9b03 4f8bac4 0a8b643 4f8bac4 828c71e 4f8bac4 41cd010 4f8bac4 0bcbe4f 828c71e 41cd010 828c71e 8b7dfb4 828c71e 22ec62d 828c71e 22ec62d 828c71e 22ec62d 828c71e 22ec62d 828c71e 22ec62d 828c71e 22ec62d 828c71e 22ec62d 828c71e 22ec62d 8b7dfb4 828c71e 8b7dfb4 828c71e 8b7dfb4 828c71e 8b7dfb4 828c71e 8b7dfb4 828c71e 41cd010 4567668 828c71e 4567668 f7b4006 7022131 7786ff5 2ec9b03 ca68f3b 4f8bac4 cf68488 f7b4006 8b7dfb4 7022131 828c71e 3fa7fe9 22ec62d 828c71e 8b7dfb4 828c71e cf68488 7022131 828c71e cf68488 7022131 828c71e cf68488 7022131 828c71e cf68488 3fe7e68 828c71e cf68488 3fe7e68 828c71e cf68488 4f8bac4 828c71e cf68488 3fe7e68 828c71e cf68488 3fe7e68 828c71e cf68488 7022131 828c71e cf68488 296b387 828c71e cf68488 40e7d39 4f8bac4 0a8b643 4f8bac4 cf68488 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import gradio as gr
import pandas as pd
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
title = {AI Energy Score Leaderboard - February 2025},
year = {2025},
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""
# List of tasks (CSV filenames)
tasks = [
'asr.csv',
'object_detection.csv',
'text_classification.csv',
'image_captioning.csv',
'question_answering.csv',
'text_generation.csv',
'image_classification.csv',
'sentence_similarity.csv',
'image_generation.csv',
'summarization.csv'
]
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"} # Keep color map
def format_stars(score):
try:
score_int = int(score)
except Exception:
score_int = 0
# Render stars in black with a slightly larger font
return f'<span style="color: black !important; font-size:1.5em !important;">{"★" * score_int}</span>'
def make_link(mname):
parts = str(mname).split('/')
display_name = parts[1] if len(parts) > 1 else mname
return f'[{display_name}](https://huggingface.co/{mname})'
# --- Leaderboard Table Functions (Modified to dynamically calculate max energy) ---
def create_minimal_bar_html(energy_value_wh, energy_score, max_energy_value):
"""Generates HTML for the minimal bar chart with dynamic max energy."""
if max_energy_value <= 0: # Avoid division by zero if max energy is 0 or negative
bar_percentage = 0
else:
bar_percentage = min(100, (energy_value_wh / max_energy_value) * 100) # Cap at 100%
bar_color = color_map.get(str(energy_score), "gray") # Default color if score is unexpected
html = f"""
<div style="display: flex; align-items: center; gap: 5px;">
<div style="width: {bar_percentage}%; height: 10px; background-color: {bar_color}; border-radius: 2px;"></div>
<span>{energy_value_wh:.4f} Wh</span>
</div>
"""
return html
def get_model_names(task):
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 # kWh to Wh conversion
df['energy_score'] = df['energy_score'].astype(int)
max_energy_for_task = df['total_gpu_energy'].max() # Calculate max energy for this task
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_task
df['GPU Energy (Wh)'] = df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_for_task), axis=1)
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
df = df[['Model', 'GPU Energy (Wh)', 'Score']] # Keep only these columns
df = df.sort_values(by='total_gpu_energy') # Sort by underlying energy value for table order
df = df.drop('total_gpu_energy', axis=1) # remove the original energy column that was used for sorting
return df
def get_all_model_names():
all_df = pd.DataFrame()
max_energy_overall = 0 # Initialize overall max energy
for task in tasks:
df = pd.read_csv('data/energy/' + task)
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 # kWh to Wh conversion
df['energy_score'] = df['energy_score'].astype(int)
max_energy_overall = max(max_energy_overall, df['total_gpu_energy'].max()) # Update overall max
all_df = pd.concat([all_df, df], ignore_index=True)
all_df = all_df.drop_duplicates(subset=['model'])
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_overall
all_df['GPU Energy (Wh)'] = all_df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_overall), axis=1)
all_df['Model'] = all_df['model'].apply(make_link)
all_df['Score'] = all_df['energy_score'].apply(format_stars)
all_df = all_df.sort_values(by='total_gpu_energy') # Sort by underlying energy value for table order
all_df = all_df.drop('total_gpu_energy', axis=1) # remove the original energy column that was used for sorting
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
def get_text_generation_model_names(model_class):
df = pd.read_csv('data/energy/text_generation.csv')
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
if 'class' in df.columns:
df = df[df['class'] == model_class]
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 # kWh to Wh conversion
df['energy_score'] = df['energy_score'].astype(int)
max_energy_for_class = df['total_gpu_energy'].max() # Calculate max energy for this class
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_class
df['GPU Energy (Wh)'] = df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_for_class), axis=1)
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
df = df[['Model', 'GPU Energy (Wh)', 'Score']] # Keep only these columns
df = df.sort_values(by='total_gpu_energy') # Sort by underlying energy value for table order
df = df.drop('total_gpu_energy', axis=1) # remove the original energy column that was used for sorting
return df
def update_text_generation(model_class):
table = get_text_generation_model_names(model_class)
return table
# --- Build the Gradio Interface (Plots Removed, Tables with Dynamic Bars) ---
demo = gr.Blocks(css="""
.gr-dataframe table {
table-layout: fixed;
width: 100%;
}
.gr-dataframe th, .gr-dataframe td {
max-width: 150px;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
/* CSS for minimal bar chart inside table cell */
.minimal-bar-container {
display: flex;
align-items: center;
gap: 5px; /* space between bar and text */
}
.minimal-bar {
height: 10px;
background-color: blue; /* default, will be overridden by dynamic color */
border-radius: 2px;
}
""")
with demo:
gr.Markdown(
"""# AI Energy Score Leaderboard
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore)
Select different tasks to see scored models. Submit open models for testing and learn about testing proprietary models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)"""
)
with gr.Tabs():
# --- Text Generation Tab with Dropdown for Model Class ---
with gr.TabItem("Text Generation 💬"):
# Dropdown moved above the leaderboard
model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"],
label="Select Model Class",
value="A")
tg_table = gr.Dataframe(get_text_generation_model_names("A"), datatype="markdown") # No plot anymore
# Update table when the dropdown value changes
model_class_dropdown.change(fn=update_text_generation,
inputs=model_class_dropdown,
outputs=[tg_table])
with gr.TabItem("Image Generation 📷"):
table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown")
with gr.TabItem("Text Classification 🎭"):
table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown")
with gr.TabItem("Image Classification 🖼️"):
table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown")
with gr.TabItem("Image Captioning 📝"):
table = gr.Dataframe(get_model_names('image_captioning.csv'), datatype="markdown")
with gr.TabItem("Summarization 📃"):
table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown")
with gr.TabItem("Automatic Speech Recognition 💬"):
table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown")
with gr.TabItem("Object Detection 🚘"):
table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown")
with gr.TabItem("Sentence Similarity 📚"):
table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown")
with gr.TabItem("Extractive QA ❔"):
table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown")
with gr.TabItem("All Tasks 💡"):
table = gr.Dataframe(get_all_model_names(), datatype="markdown")
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=10,
show_copy_button=True,
)
gr.Markdown(
"""Last updated: February 2025"""
)
demo.launch() |