File size: 9,357 Bytes
460fdc7
 
42e8f64
c40907d
2ec9b03
4f8bac4
2ec9b03
 
4f8bac4
2ec9b03
4f8bac4
 
0a8b643
4f8bac4
 
 
 
 
 
 
 
 
 
 
 
 
828c71e
 
4f8bac4
 
 
 
 
41cd010
 
4f8bac4
 
 
 
 
0bcbe4f
828c71e
41cd010
828c71e
 
 
 
 
 
 
8b7dfb4
828c71e
 
 
 
 
 
 
22ec62d
 
 
 
 
 
828c71e
22ec62d
828c71e
 
 
 
 
22ec62d
 
828c71e
 
 
22ec62d
 
 
 
828c71e
22ec62d
 
828c71e
22ec62d
828c71e
 
22ec62d
 
828c71e
 
 
 
 
 
 
22ec62d
 
 
8b7dfb4
 
 
 
 
 
828c71e
8b7dfb4
828c71e
 
 
 
 
8b7dfb4
 
828c71e
 
 
8b7dfb4
 
 
 
828c71e
8b7dfb4
828c71e
41cd010
4567668
 
 
 
 
 
 
 
 
 
 
828c71e
 
 
 
 
 
 
 
 
 
 
4567668
f7b4006
7022131
7786ff5
2ec9b03
 
ca68f3b
4f8bac4
cf68488
f7b4006
8b7dfb4
7022131
828c71e
3fa7fe9
 
22ec62d
828c71e
 
8b7dfb4
 
828c71e
cf68488
7022131
828c71e
cf68488
7022131
828c71e
cf68488
7022131
828c71e
cf68488
3fe7e68
828c71e
cf68488
3fe7e68
828c71e
cf68488
4f8bac4
828c71e
cf68488
3fe7e68
828c71e
cf68488
3fe7e68
828c71e
cf68488
7022131
828c71e
cf68488
296b387
828c71e
cf68488
40e7d39
4f8bac4
 
 
 
 
 
 
0a8b643
 
 
4f8bac4
cf68488
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
import pandas as pd

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
    author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
    title = {AI Energy Score Leaderboard - February 2025},
    year = {2025},
    publisher = {Hugging Face},
    howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""

# List of tasks (CSV filenames)
tasks = [
    'asr.csv',
    'object_detection.csv',
    'text_classification.csv',
    'image_captioning.csv',
    'question_answering.csv',
    'text_generation.csv',
    'image_classification.csv',
    'sentence_similarity.csv',
    'image_generation.csv',
    'summarization.csv'
]

color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"} # Keep color map

def format_stars(score):
    try:
        score_int = int(score)
    except Exception:
        score_int = 0
    # Render stars in black with a slightly larger font
    return f'<span style="color: black !important; font-size:1.5em !important;">{"★" * score_int}</span>'

def make_link(mname):
    parts = str(mname).split('/')
    display_name = parts[1] if len(parts) > 1 else mname
    return f'[{display_name}](https://huggingface.co/{mname})'

# --- Leaderboard Table Functions (Modified to dynamically calculate max energy) ---

def create_minimal_bar_html(energy_value_wh, energy_score, max_energy_value):
    """Generates HTML for the minimal bar chart with dynamic max energy."""
    if max_energy_value <= 0: # Avoid division by zero if max energy is 0 or negative
        bar_percentage = 0
    else:
        bar_percentage = min(100, (energy_value_wh / max_energy_value) * 100) # Cap at 100%
    bar_color = color_map.get(str(energy_score), "gray") # Default color if score is unexpected

    html = f"""
    <div style="display: flex; align-items: center; gap: 5px;">
        <div style="width: {bar_percentage}%; height: 10px; background-color: {bar_color}; border-radius: 2px;"></div>
        <span>{energy_value_wh:.4f} Wh</span>
    </div>
    """
    return html


def get_model_names(task):
    df = pd.read_csv('data/energy/' + task)
    if df.columns[0].startswith("Unnamed:"):
        df = df.iloc[:, 1:]
    df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 # kWh to Wh conversion
    df['energy_score'] = df['energy_score'].astype(int)
    max_energy_for_task = df['total_gpu_energy'].max() # Calculate max energy for this task

    # Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_task
    df['GPU Energy (Wh)'] = df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_for_task), axis=1)

    df['Model'] = df['model'].apply(make_link)
    df['Score'] = df['energy_score'].apply(format_stars)
    df = df[['Model', 'GPU Energy (Wh)', 'Score']] # Keep only these columns
    df = df.sort_values(by='total_gpu_energy') # Sort by underlying energy value for table order
    df = df.drop('total_gpu_energy', axis=1) # remove the original energy column that was used for sorting
    return df

def get_all_model_names():
    all_df = pd.DataFrame()
    max_energy_overall = 0 # Initialize overall max energy
    for task in tasks:
        df = pd.read_csv('data/energy/' + task)
        df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 # kWh to Wh conversion
        df['energy_score'] = df['energy_score'].astype(int)
        max_energy_overall = max(max_energy_overall, df['total_gpu_energy'].max()) # Update overall max

        all_df = pd.concat([all_df, df], ignore_index=True)
    all_df = all_df.drop_duplicates(subset=['model'])

    # Create HTML bar chart for GPU Energy column, passing dynamic max_energy_overall
    all_df['GPU Energy (Wh)'] = all_df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_overall), axis=1)
    all_df['Model'] = all_df['model'].apply(make_link)
    all_df['Score'] = all_df['energy_score'].apply(format_stars)
    all_df = all_df.sort_values(by='total_gpu_energy') # Sort by underlying energy value for table order
    all_df = all_df.drop('total_gpu_energy', axis=1) # remove the original energy column that was used for sorting
    return all_df[['Model', 'GPU Energy (Wh)', 'Score']]


def get_text_generation_model_names(model_class):
    df = pd.read_csv('data/energy/text_generation.csv')
    if df.columns[0].startswith("Unnamed:"):
        df = df.iloc[:, 1:]
    if 'class' in df.columns:
        df = df[df['class'] == model_class]
    df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 # kWh to Wh conversion
    df['energy_score'] = df['energy_score'].astype(int)
    max_energy_for_class = df['total_gpu_energy'].max() # Calculate max energy for this class

    # Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_class
    df['GPU Energy (Wh)'] = df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_for_class), axis=1)

    df['Model'] = df['model'].apply(make_link)
    df['Score'] = df['energy_score'].apply(format_stars)
    df = df[['Model', 'GPU Energy (Wh)', 'Score']] # Keep only these columns
    df = df.sort_values(by='total_gpu_energy') # Sort by underlying energy value for table order
    df = df.drop('total_gpu_energy', axis=1) # remove the original energy column that was used for sorting
    return df

def update_text_generation(model_class):
    table = get_text_generation_model_names(model_class)
    return table

# --- Build the Gradio Interface (Plots Removed, Tables with Dynamic Bars) ---

demo = gr.Blocks(css="""
.gr-dataframe table {
    table-layout: fixed;
    width: 100%;
}
.gr-dataframe th, .gr-dataframe td {
    max-width: 150px;
    white-space: nowrap;
    overflow: hidden;
    text-overflow: ellipsis;
}
/* CSS for minimal bar chart inside table cell */
.minimal-bar-container {
    display: flex;
    align-items: center;
    gap: 5px; /* space between bar and text */
}
.minimal-bar {
    height: 10px;
    background-color: blue; /* default, will be overridden by dynamic color */
    border-radius: 2px;
}
""")

with demo:
    gr.Markdown(
        """# AI Energy Score Leaderboard
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore)
Select different tasks to see scored models. Submit open models for testing and learn about testing proprietary models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)"""
    )

    with gr.Tabs():
        # --- Text Generation Tab with Dropdown for Model Class ---
        with gr.TabItem("Text Generation 💬"):
            # Dropdown moved above the leaderboard
            model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"],
                                                 label="Select Model Class",
                                                 value="A")
            tg_table = gr.Dataframe(get_text_generation_model_names("A"), datatype="markdown") # No plot anymore
            # Update table when the dropdown value changes
            model_class_dropdown.change(fn=update_text_generation,
                                        inputs=model_class_dropdown,
                                        outputs=[tg_table])

        with gr.TabItem("Image Generation 📷"):
            table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown")

        with gr.TabItem("Text Classification 🎭"):
            table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown")

        with gr.TabItem("Image Classification 🖼️"):
            table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown")

        with gr.TabItem("Image Captioning 📝"):
            table = gr.Dataframe(get_model_names('image_captioning.csv'), datatype="markdown")

        with gr.TabItem("Summarization 📃"):
            table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown")

        with gr.TabItem("Automatic Speech Recognition 💬"):
            table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown")

        with gr.TabItem("Object Detection 🚘"):
            table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown")

        with gr.TabItem("Sentence Similarity 📚"):
            table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown")

        with gr.TabItem("Extractive QA ❔"):
            table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown")

        with gr.TabItem("All Tasks 💡"):
            table = gr.Dataframe(get_all_model_names(), datatype="markdown")

    with gr.Accordion("📙 Citation", open=False):
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            elem_id="citation-button",
            lines=10,
            show_copy_button=True,
        )
    gr.Markdown(
        """Last updated: February 2025"""
    )

demo.launch()