Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" | |
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard, | |
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell}, | |
title = {AI Energy Score Leaderboard - February 2025}, | |
year = {2025}, | |
publisher = {Hugging Face}, | |
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}", | |
}""" | |
# List of tasks (CSV filenames) | |
tasks = [ | |
'asr.csv', | |
'object_detection.csv', | |
'text_classification.csv', | |
'image_captioning.csv', | |
'question_answering.csv', | |
'text_generation.csv', | |
'image_classification.csv', | |
'sentence_similarity.csv', | |
'image_generation.csv', | |
'summarization.csv' | |
] | |
def format_stars(score): | |
try: | |
score_int = int(score) | |
except Exception: | |
score_int = 0 | |
# Render stars in black with a slightly larger font | |
return f'<span style="color: black; font-size:1.5em;">{"★" * score_int}</span>' | |
def make_link(mname): | |
parts = str(mname).split('/') | |
display_name = parts[1] if len(parts) > 1 else mname | |
return f'<a href="https://huggingface.co/{mname}" target="_blank">{display_name}</a>' | |
def generate_html_table_from_df(df): | |
""" | |
Generate an HTML table from the given DataFrame. | |
Each GPU Energy cell contains both the numeric energy (Wh) and a horizontal bar | |
whose width is computed relative to the maximum energy in the table. | |
""" | |
max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1 | |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"} | |
html = '<table style="width:100%; border-collapse: collapse; font-family: Arial, sans-serif;">' | |
html += '<thead><tr style="background-color: #f2f2f2;">' | |
html += '<th style="text-align: left; padding: 8px;">Model</th>' | |
html += '<th style="text-align: left; padding: 8px;">GPU Energy (Wh)</th>' | |
html += '<th style="text-align: left; padding: 8px;">Score</th>' | |
html += '</tr></thead>' | |
html += '<tbody>' | |
for _, row in df.iterrows(): | |
energy_numeric = row['gpu_energy_numeric'] | |
energy_str = f"{energy_numeric:.4f}" | |
# Calculate the relative width as a percentage | |
bar_width = (energy_numeric / max_energy) * 100 | |
score_val = row['energy_score'] | |
bar_color = color_map.get(str(score_val), "gray") | |
html += '<tr>' | |
html += f'<td style="padding: 8px;">{row["Model"]}</td>' | |
html += ( | |
f'<td style="padding: 8px;">{energy_str}<br>' | |
f'<div style="background-color: {bar_color}; width: {bar_width:.1f}%; height: 10px;"></div></td>' | |
) | |
html += f'<td style="padding: 8px;">{row["Score"]}</td>' | |
html += '</tr>' | |
html += '</tbody></table>' | |
return html | |
def get_model_names_html(task): | |
df = pd.read_csv('data/energy/' + task) | |
if df.columns[0].startswith("Unnamed:"): | |
df = df.iloc[:, 1:] | |
# Convert energy_score to integer and total_gpu_energy from kWh to Wh | |
df['energy_score'] = df['energy_score'].astype(int) | |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 | |
df['Model'] = df['model'].apply(make_link) | |
df['Score'] = df['energy_score'].apply(format_stars) | |
# Sort descending (high to low) | |
df = df.sort_values(by='gpu_energy_numeric', ascending=False) | |
return generate_html_table_from_df(df) | |
def get_all_model_names_html(): | |
all_df = pd.DataFrame() | |
for task in tasks: | |
df = pd.read_csv('data/energy/' + task) | |
if df.columns[0].startswith("Unnamed:"): | |
df = df.iloc[:, 1:] | |
df['energy_score'] = df['energy_score'].astype(int) | |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 | |
df['Model'] = df['model'].apply(make_link) | |
df['Score'] = df['energy_score'].apply(format_stars) | |
all_df = pd.concat([all_df, df], ignore_index=True) | |
all_df = all_df.drop_duplicates(subset=['model']) | |
# Sort descending | |
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=False) | |
return generate_html_table_from_df(all_df) | |
def get_text_generation_model_names_html(model_class): | |
df = pd.read_csv('data/energy/text_generation.csv') | |
if df.columns[0].startswith("Unnamed:"): | |
df = df.iloc[:, 1:] | |
# Filter by model class if the "class" column exists | |
if 'class' in df.columns: | |
df = df[df['class'] == model_class] | |
df['energy_score'] = df['energy_score'].astype(int) | |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 | |
df['Model'] = df['model'].apply(make_link) | |
df['Score'] = df['energy_score'].apply(format_stars) | |
# Sort descending | |
df = df.sort_values(by='gpu_energy_numeric', ascending=False) | |
return generate_html_table_from_df(df) | |
def update_text_generation(selected_display): | |
# Mapping from display text to the internal value | |
mapping = { | |
"A (Single Consumer GPU) <20B parameters": "A", | |
"B (Single Cloud GPU) 20-66B parameters": "B", | |
"C (Multiple Cloud GPUs) >66B parameters": "C" | |
} | |
model_class = mapping.get(selected_display, "A") | |
table_html = get_text_generation_model_names_html(model_class) | |
return table_html | |
# --- Build the Gradio Interface --- | |
demo = gr.Blocks(css=""" | |
.gr-dataframe table { | |
table-layout: fixed; | |
width: 100%; | |
} | |
.gr-dataframe th, .gr-dataframe td { | |
max-width: 150px; | |
white-space: nowrap; | |
overflow: hidden; | |
text-overflow: ellipsis; | |
} | |
""") | |
with demo: | |
gr.Markdown( | |
"""# AI Energy Score Leaderboard | |
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore) | |
Select different tasks to see scored models. Submit open models for testing and learn about testing proprietary models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)""" | |
) | |
# Visually appealing header links | |
gr.HTML(''' | |
<div style="text-align: center; margin-bottom: 20px;"> | |
<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="margin: 0 15px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Submission Portal</a> | |
<a href="https://huggingface.co/spaces/AIEnergyScore/README/discussions" style="margin: 0 15px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Community</a> | |
<a href="https://huggingface.github.io/AIEnergyScore/#faq" style="margin: 0 15px; text-decoration: none; font-weight: bold; font-size: 1.1em;">FAQ</a> | |
<a href="https://huggingface.github.io/AIEnergyScore/#documentation" style="margin: 0 15px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Documentation</a> | |
</div> | |
''') | |
with gr.Tabs(): | |
# --- Text Generation Tab with Dropdown for Model Class --- | |
with gr.TabItem("Text Generation 💬"): | |
# Define the dropdown with descriptive text options. | |
model_class_options = [ | |
"A (Single Consumer GPU) <20B parameters", | |
"B (Single Cloud GPU) 20-66B parameters", | |
"C (Multiple Cloud GPUs) >66B parameters" | |
] | |
model_class_dropdown = gr.Dropdown( | |
choices=model_class_options, | |
label="Select Model Class", | |
value=model_class_options[0] | |
) | |
tg_table = gr.HTML(get_text_generation_model_names_html("A")) | |
model_class_dropdown.change( | |
fn=update_text_generation, | |
inputs=model_class_dropdown, | |
outputs=tg_table | |
) | |
with gr.TabItem("Image Generation 📷"): | |
gr.HTML(get_model_names_html('image_generation.csv')) | |
with gr.TabItem("Text Classification 🎭"): | |
gr.HTML(get_model_names_html('text_classification.csv')) | |
with gr.TabItem("Image Classification 🖼️"): | |
gr.HTML(get_model_names_html('image_classification.csv')) | |
with gr.TabItem("Image Captioning 📝"): | |
gr.HTML(get_model_names_html('image_captioning.csv')) | |
with gr.TabItem("Summarization 📃"): | |
gr.HTML(get_model_names_html('summarization.csv')) | |
with gr.TabItem("Automatic Speech Recognition 💬"): | |
gr.HTML(get_model_names_html('asr.csv')) | |
with gr.TabItem("Object Detection 🚘"): | |
gr.HTML(get_model_names_html('object_detection.csv')) | |
with gr.TabItem("Sentence Similarity 📚"): | |
gr.HTML(get_model_names_html('sentence_similarity.csv')) | |
with gr.TabItem("Extractive QA ❔"): | |
gr.HTML(get_model_names_html('question_answering.csv')) | |
with gr.TabItem("All Tasks 💡"): | |
gr.HTML(get_all_model_names_html()) | |
with gr.Accordion("📙 Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
lines=10, | |
show_copy_button=True, | |
) | |
gr.Markdown("""Last updated: February 2025""") | |
demo.launch() |