File size: 9,287 Bytes
460fdc7
 
42e8f64
c40907d
2ec9b03
4f8bac4
2ec9b03
 
4f8bac4
2ec9b03
4f8bac4
 
0a8b643
4f8bac4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41cd010
c3f4f1f
4f8bac4
 
 
 
c3f4f1f
 
 
 
88fbc65
 
 
c3f4f1f
 
 
 
 
 
 
 
 
 
 
 
 
88fbc65
c3f4f1f
 
 
 
 
 
 
 
 
 
 
 
828c71e
22ec62d
c3f4f1f
22ec62d
 
 
c3f4f1f
22ec62d
c3f4f1f
22ec62d
 
88fbc65
 
c3f4f1f
22ec62d
c3f4f1f
22ec62d
 
 
c3f4f1f
 
22ec62d
c3f4f1f
 
 
22ec62d
 
88fbc65
 
c3f4f1f
22ec62d
c3f4f1f
8b7dfb4
 
 
88fbc65
8b7dfb4
 
 
c3f4f1f
8b7dfb4
 
88fbc65
 
c3f4f1f
8b7dfb4
88fbc65
 
 
 
 
 
 
 
c3f4f1f
 
8b7dfb4
c3f4f1f
41cd010
4567668
 
 
 
 
 
 
 
 
 
 
 
f7b4006
7022131
7786ff5
2ec9b03
 
ca68f3b
4f8bac4
88fbc65
 
 
 
 
 
 
 
 
 
 
f7b4006
8b7dfb4
7022131
88fbc65
 
 
 
 
 
 
 
 
 
 
c3f4f1f
88fbc65
 
 
 
 
cf68488
7022131
c3f4f1f
cf68488
7022131
c3f4f1f
cf68488
7022131
c3f4f1f
cf68488
3fe7e68
c3f4f1f
cf68488
3fe7e68
c3f4f1f
cf68488
4f8bac4
c3f4f1f
cf68488
3fe7e68
c3f4f1f
cf68488
3fe7e68
c3f4f1f
cf68488
7022131
c3f4f1f
cf68488
296b387
c3f4f1f
cf68488
40e7d39
4f8bac4
 
 
 
 
 
 
88fbc65
4f8bac4
c3f4f1f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import gradio as gr
import pandas as pd

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
    author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
    title = {AI Energy Score Leaderboard - February 2025},
    year = {2025},
    publisher = {Hugging Face},
    howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""

# List of tasks (CSV filenames)
tasks = [
    'asr.csv',
    'object_detection.csv',
    'text_classification.csv',
    'image_captioning.csv',
    'question_answering.csv',
    'text_generation.csv',
    'image_classification.csv',
    'sentence_similarity.csv',
    'image_generation.csv',
    'summarization.csv'
]

def format_stars(score):
    try:
        score_int = int(score)
    except Exception:
        score_int = 0
    # Render stars in black with a slightly larger font
    return f'<span style="color: black; font-size:1.5em;">{"★" * score_int}</span>'

def make_link(mname):
    parts = str(mname).split('/')
    display_name = parts[1] if len(parts) > 1 else mname
    return f'<a href="https://huggingface.co/{mname}" target="_blank">{display_name}</a>'

def generate_html_table_from_df(df):
    """
    Generate an HTML table from the given DataFrame.
    Each GPU Energy cell contains both the numeric energy (Wh) and a horizontal bar
    whose width is computed relative to the maximum energy in the table.
    """
    max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1
    color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
    html = '<table style="width:100%; border-collapse: collapse; font-family: Arial, sans-serif;">'
    html += '<thead><tr style="background-color: #f2f2f2;">'
    html += '<th style="text-align: left; padding: 8px;">Model</th>'
    html += '<th style="text-align: left; padding: 8px;">GPU Energy (Wh)</th>'
    html += '<th style="text-align: left; padding: 8px;">Score</th>'
    html += '</tr></thead>'
    html += '<tbody>'
    for _, row in df.iterrows():
        energy_numeric = row['gpu_energy_numeric']
        energy_str = f"{energy_numeric:.4f}"
        # Calculate the relative width as a percentage
        bar_width = (energy_numeric / max_energy) * 100
        score_val = row['energy_score']
        bar_color = color_map.get(str(score_val), "gray")
        html += '<tr>'
        html += f'<td style="padding: 8px;">{row["Model"]}</td>'
        html += (
            f'<td style="padding: 8px;">{energy_str}<br>'
            f'<div style="background-color: {bar_color}; width: {bar_width:.1f}%; height: 10px;"></div></td>'
        )
        html += f'<td style="padding: 8px;">{row["Score"]}</td>'
        html += '</tr>'
    html += '</tbody></table>'
    return html

def get_model_names_html(task):
    df = pd.read_csv('data/energy/' + task)
    if df.columns[0].startswith("Unnamed:"):
        df = df.iloc[:, 1:]
    # Convert energy_score to integer and total_gpu_energy from kWh to Wh
    df['energy_score'] = df['energy_score'].astype(int)
    df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
    df['Model'] = df['model'].apply(make_link)
    df['Score'] = df['energy_score'].apply(format_stars)
    # Sort descending (high to low)
    df = df.sort_values(by='gpu_energy_numeric', ascending=False)
    return generate_html_table_from_df(df)

def get_all_model_names_html():
    all_df = pd.DataFrame()
    for task in tasks:
        df = pd.read_csv('data/energy/' + task)
        if df.columns[0].startswith("Unnamed:"):
            df = df.iloc[:, 1:]
        df['energy_score'] = df['energy_score'].astype(int)
        df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
        df['Model'] = df['model'].apply(make_link)
        df['Score'] = df['energy_score'].apply(format_stars)
        all_df = pd.concat([all_df, df], ignore_index=True)
    all_df = all_df.drop_duplicates(subset=['model'])
    # Sort descending
    all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=False)
    return generate_html_table_from_df(all_df)

def get_text_generation_model_names_html(model_class):
    df = pd.read_csv('data/energy/text_generation.csv')
    if df.columns[0].startswith("Unnamed:"):
        df = df.iloc[:, 1:]
    # Filter by model class if the "class" column exists
    if 'class' in df.columns:
        df = df[df['class'] == model_class]
    df['energy_score'] = df['energy_score'].astype(int)
    df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
    df['Model'] = df['model'].apply(make_link)
    df['Score'] = df['energy_score'].apply(format_stars)
    # Sort descending
    df = df.sort_values(by='gpu_energy_numeric', ascending=False)
    return generate_html_table_from_df(df)

def update_text_generation(selected_display):
    # Mapping from display text to the internal value
    mapping = {
        "A (Single Consumer GPU) <20B parameters": "A",
        "B (Single Cloud GPU) 20-66B parameters": "B",
        "C (Multiple Cloud GPUs) >66B parameters": "C"
    }
    model_class = mapping.get(selected_display, "A")
    table_html = get_text_generation_model_names_html(model_class)
    return table_html

# --- Build the Gradio Interface ---

demo = gr.Blocks(css="""
.gr-dataframe table {
    table-layout: fixed;
    width: 100%;
}
.gr-dataframe th, .gr-dataframe td {
    max-width: 150px;
    white-space: nowrap;
    overflow: hidden;
    text-overflow: ellipsis;
}
""")

with demo:
    gr.Markdown(
        """# AI Energy Score Leaderboard
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore)
Select different tasks to see scored models. Submit open models for testing and learn about testing proprietary models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)"""
    )
    
    # Visually appealing header links
    gr.HTML('''
    <div style="text-align: center; margin-bottom: 20px;">
        <a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="margin: 0 15px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Submission Portal</a>
        <a href="https://huggingface.co/spaces/AIEnergyScore/README/discussions" style="margin: 0 15px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Community</a>
        <a href="https://huggingface.github.io/AIEnergyScore/#faq" style="margin: 0 15px; text-decoration: none; font-weight: bold; font-size: 1.1em;">FAQ</a>
        <a href="https://huggingface.github.io/AIEnergyScore/#documentation" style="margin: 0 15px; text-decoration: none; font-weight: bold; font-size: 1.1em;">Documentation</a>
    </div>
    ''')
    
    with gr.Tabs():
        # --- Text Generation Tab with Dropdown for Model Class ---
        with gr.TabItem("Text Generation 💬"):
            # Define the dropdown with descriptive text options.
            model_class_options = [
                "A (Single Consumer GPU) <20B parameters",
                "B (Single Cloud GPU) 20-66B parameters",
                "C (Multiple Cloud GPUs) >66B parameters"
            ]
            model_class_dropdown = gr.Dropdown(
                choices=model_class_options,
                label="Select Model Class",
                value=model_class_options[0]
            )
            tg_table = gr.HTML(get_text_generation_model_names_html("A"))
            model_class_dropdown.change(
                fn=update_text_generation,
                inputs=model_class_dropdown,
                outputs=tg_table
            )

        with gr.TabItem("Image Generation 📷"):
            gr.HTML(get_model_names_html('image_generation.csv'))

        with gr.TabItem("Text Classification 🎭"):
            gr.HTML(get_model_names_html('text_classification.csv'))

        with gr.TabItem("Image Classification 🖼️"):
            gr.HTML(get_model_names_html('image_classification.csv'))

        with gr.TabItem("Image Captioning 📝"):
            gr.HTML(get_model_names_html('image_captioning.csv'))

        with gr.TabItem("Summarization 📃"):
            gr.HTML(get_model_names_html('summarization.csv'))

        with gr.TabItem("Automatic Speech Recognition 💬"):
            gr.HTML(get_model_names_html('asr.csv'))

        with gr.TabItem("Object Detection 🚘"):
            gr.HTML(get_model_names_html('object_detection.csv'))

        with gr.TabItem("Sentence Similarity 📚"):
            gr.HTML(get_model_names_html('sentence_similarity.csv'))

        with gr.TabItem("Extractive QA ❔"):
            gr.HTML(get_model_names_html('question_answering.csv'))

        with gr.TabItem("All Tasks 💡"):
            gr.HTML(get_all_model_names_html())

    with gr.Accordion("📙 Citation", open=False):
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            elem_id="citation-button",
            lines=10,
            show_copy_button=True,
        )
    gr.Markdown("""Last updated: February 2025""")

demo.launch()