Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -30,12 +30,13 @@ def format_stars(score):
|
|
30 |
Convert the energy_score (assumed to be an integer from 1 to 5)
|
31 |
into that many star characters wrapped in a span styled with color #3fa45bff
|
32 |
and with a font size increased to 2em.
|
|
|
33 |
"""
|
34 |
try:
|
35 |
score_int = int(score)
|
36 |
except Exception:
|
37 |
score_int = 0
|
38 |
-
return f'<span style="color: #3fa45bff; font-size:2em;">{"★" * score_int}</span>'
|
39 |
|
40 |
def make_link(mname):
|
41 |
"""
|
@@ -49,13 +50,15 @@ def make_link(mname):
|
|
49 |
def get_plots(task):
|
50 |
"""
|
51 |
Read the energy CSV for a given task and return a Plotly scatter plot.
|
52 |
-
|
53 |
-
|
54 |
"""
|
55 |
df = pd.read_csv('data/energy/' + task)
|
56 |
df['energy_score'] = df['energy_score'].astype(int)
|
57 |
-
#
|
58 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].round(4)
|
|
|
|
|
59 |
|
60 |
# Define a 5-level color mapping: 1 = red, 5 = green.
|
61 |
color_map = {
|
@@ -66,11 +69,10 @@ def get_plots(task):
|
|
66 |
5: "green"
|
67 |
}
|
68 |
|
69 |
-
# Create a horizontal scatter plot: x is the energy, y is the model.
|
70 |
fig = px.scatter(
|
71 |
df,
|
72 |
x="GPU Energy (Wh)",
|
73 |
-
y="
|
74 |
custom_data=['energy_score'],
|
75 |
height=500,
|
76 |
width=800,
|
@@ -97,6 +99,7 @@ def get_all_plots():
|
|
97 |
df = pd.read_csv('data/energy/' + task)
|
98 |
df['energy_score'] = df['energy_score'].astype(int)
|
99 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].round(4)
|
|
|
100 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
101 |
all_df = all_df.drop_duplicates(subset=['model'])
|
102 |
|
@@ -110,7 +113,7 @@ def get_all_plots():
|
|
110 |
fig = px.scatter(
|
111 |
all_df,
|
112 |
x="GPU Energy (Wh)",
|
113 |
-
y="
|
114 |
custom_data=['energy_score'],
|
115 |
height=500,
|
116 |
width=800,
|
@@ -131,18 +134,18 @@ def get_model_names(task):
|
|
131 |
"""
|
132 |
For a given task, load the energy CSV and return a dataframe with the following columns:
|
133 |
- Model (a markdown link)
|
134 |
-
- GPU Energy (Wh)
|
135 |
- Score (a star rating based on energy_score)
|
136 |
For text_generation.csv only, also add the "Class" column from the CSV.
|
137 |
-
The final order is: Model, GPU Energy (Wh), Score, [Class].
|
138 |
"""
|
139 |
df = pd.read_csv('data/energy/' + task)
|
140 |
df['energy_score'] = df['energy_score'].astype(int)
|
141 |
-
|
|
|
142 |
df['Model'] = df['model'].apply(make_link)
|
143 |
df['Score'] = df['energy_score'].apply(format_stars)
|
144 |
|
145 |
-
# If this CSV contains a "class" column (e.g., for Text Generation), add it.
|
146 |
if 'class' in df.columns:
|
147 |
df['Class'] = df['class']
|
148 |
df = df[['Model', 'GPU Energy (Wh)', 'Score', 'Class']]
|
@@ -162,7 +165,7 @@ def get_all_model_names():
|
|
162 |
for task in tasks:
|
163 |
df = pd.read_csv('data/energy/' + task)
|
164 |
df['energy_score'] = df['energy_score'].astype(int)
|
165 |
-
df['GPU Energy (Wh)'] = df['total_gpu_energy'].
|
166 |
df['Model'] = df['model'].apply(make_link)
|
167 |
df['Score'] = df['energy_score'].apply(format_stars)
|
168 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
@@ -189,7 +192,6 @@ Click through the tasks below to see how different models measure up in terms of
|
|
189 |
with gr.Column(scale=1.3):
|
190 |
plot = gr.Plot(get_plots('text_generation.csv'))
|
191 |
with gr.Column(scale=1):
|
192 |
-
# For text generation, the CSV is assumed to have a "class" column.
|
193 |
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
|
194 |
|
195 |
with gr.TabItem("Image Generation 📷"):
|
@@ -274,4 +276,4 @@ Click through the tasks below to see how different models measure up in terms of
|
|
274 |
"""Last updated: February 2025"""
|
275 |
)
|
276 |
|
277 |
-
demo.launch()
|
|
|
30 |
Convert the energy_score (assumed to be an integer from 1 to 5)
|
31 |
into that many star characters wrapped in a span styled with color #3fa45bff
|
32 |
and with a font size increased to 2em.
|
33 |
+
The use of '!important' forces the styling immediately.
|
34 |
"""
|
35 |
try:
|
36 |
score_int = int(score)
|
37 |
except Exception:
|
38 |
score_int = 0
|
39 |
+
return f'<span style="color: #3fa45bff !important; font-size:2em !important;">{"★" * score_int}</span>'
|
40 |
|
41 |
def make_link(mname):
|
42 |
"""
|
|
|
50 |
def get_plots(task):
|
51 |
"""
|
52 |
Read the energy CSV for a given task and return a Plotly scatter plot.
|
53 |
+
X-axis: Numeric GPU Energy (Wh) (rounded to 4 decimals)
|
54 |
+
Y-axis: Display only the model name (extracted from the model field)
|
55 |
"""
|
56 |
df = pd.read_csv('data/energy/' + task)
|
57 |
df['energy_score'] = df['energy_score'].astype(int)
|
58 |
+
# Use the raw energy (no multiplication) rounded to 4 decimals for plotting
|
59 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].round(4)
|
60 |
+
# Create a column that displays only the model name (the part after '/')
|
61 |
+
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
62 |
|
63 |
# Define a 5-level color mapping: 1 = red, 5 = green.
|
64 |
color_map = {
|
|
|
69 |
5: "green"
|
70 |
}
|
71 |
|
|
|
72 |
fig = px.scatter(
|
73 |
df,
|
74 |
x="GPU Energy (Wh)",
|
75 |
+
y="Display Model",
|
76 |
custom_data=['energy_score'],
|
77 |
height=500,
|
78 |
width=800,
|
|
|
99 |
df = pd.read_csv('data/energy/' + task)
|
100 |
df['energy_score'] = df['energy_score'].astype(int)
|
101 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].round(4)
|
102 |
+
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
103 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
104 |
all_df = all_df.drop_duplicates(subset=['model'])
|
105 |
|
|
|
113 |
fig = px.scatter(
|
114 |
all_df,
|
115 |
x="GPU Energy (Wh)",
|
116 |
+
y="Display Model",
|
117 |
custom_data=['energy_score'],
|
118 |
height=500,
|
119 |
width=800,
|
|
|
134 |
"""
|
135 |
For a given task, load the energy CSV and return a dataframe with the following columns:
|
136 |
- Model (a markdown link)
|
137 |
+
- GPU Energy (Wh) formatted as a string with 4 decimal places
|
138 |
- Score (a star rating based on energy_score)
|
139 |
For text_generation.csv only, also add the "Class" column from the CSV.
|
140 |
+
The final column order is: Model, GPU Energy (Wh), Score, [Class].
|
141 |
"""
|
142 |
df = pd.read_csv('data/energy/' + task)
|
143 |
df['energy_score'] = df['energy_score'].astype(int)
|
144 |
+
# Format the energy as a string with 4 decimals so that very small values display correctly
|
145 |
+
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
146 |
df['Model'] = df['model'].apply(make_link)
|
147 |
df['Score'] = df['energy_score'].apply(format_stars)
|
148 |
|
|
|
149 |
if 'class' in df.columns:
|
150 |
df['Class'] = df['class']
|
151 |
df = df[['Model', 'GPU Energy (Wh)', 'Score', 'Class']]
|
|
|
165 |
for task in tasks:
|
166 |
df = pd.read_csv('data/energy/' + task)
|
167 |
df['energy_score'] = df['energy_score'].astype(int)
|
168 |
+
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
169 |
df['Model'] = df['model'].apply(make_link)
|
170 |
df['Score'] = df['energy_score'].apply(format_stars)
|
171 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
|
|
192 |
with gr.Column(scale=1.3):
|
193 |
plot = gr.Plot(get_plots('text_generation.csv'))
|
194 |
with gr.Column(scale=1):
|
|
|
195 |
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
|
196 |
|
197 |
with gr.TabItem("Image Generation 📷"):
|
|
|
276 |
"""Last updated: February 2025"""
|
277 |
)
|
278 |
|
279 |
+
demo.launch()
|