File size: 6,660 Bytes
663d1ad
 
 
8e3cac5
663d1ad
86b10f3
 
 
2a70269
8e3cac5
86b10f3
8e3cac5
86b10f3
7f07411
1af801b
86b10f3
 
1af801b
86b10f3
 
 
 
 
 
 
663d1ad
8e3cac5
6744e1a
8e3cac5
 
 
86b10f3
8e3cac5
 
 
 
 
 
 
86b10f3
8e3cac5
 
 
86b10f3
8e3cac5
86b10f3
 
 
6744e1a
86b10f3
8e3cac5
 
86b10f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e3cac5
 
 
 
 
 
 
86b10f3
 
 
 
 
8e3cac5
86b10f3
8e3cac5
 
86b10f3
8e3cac5
86b10f3
8e3cac5
 
86b10f3
8e3cac5
 
 
 
 
 
 
 
 
 
 
 
86b10f3
8e3cac5
 
 
 
 
 
 
 
 
 
 
86b10f3
8e3cac5
 
86b10f3
8e3cac5
 
 
 
 
 
 
86b10f3
8e3cac5
 
86b10f3
7935863
8e3cac5
 
 
 
e503f85
8e3cac5
 
 
7935863
 
 
86b10f3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
import numpy as np
import h5py
import faiss
import json
from transformers import AutoTokenizer, AutoModel
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import re
from collections import Counter
import spacy
import torch
from nltk.corpus import wordnet
import nltk

# Download WordNet data
nltk.download('wordnet')

# Load Spacy model for advanced NLP
try:
    nlp = spacy.load("en_core_web_sm")
except IOError:
    print("Downloading spacy model...")
    spacy.cli.download("en_core_web_sm")
    nlp = spacy.load("en_core_web_sm")

def load_data():
    try:
        with h5py.File('patent_embeddings.h5', 'r') as f:
            embeddings = f['embeddings'][:]
            patent_numbers = f['patent_numbers'][:]
        
        metadata = {}
        texts = []
        with open('patent_metadata.jsonl', 'r') as f:
            for line in f:
                data = json.loads(line)
                metadata[data['patent_number']] = data
                texts.append(data['text'])
        
        print(f"Embedding shape: {embeddings.shape}")
        print(f"Number of patent numbers: {len(patent_numbers)}")
        print(f"Number of metadata entries: {len(metadata)}")
        
        return embeddings, patent_numbers, metadata, texts
    except FileNotFoundError as e:
        print(f"Error: Could not find file. {e}")
        raise
    except Exception as e:
        print(f"An unexpected error occurred while loading data: {e}")
        raise

embeddings, patent_numbers, metadata, texts = load_data()

# Load BERT model for encoding search queries
tokenizer = AutoTokenizer.from_pretrained('anferico/bert-for-patents')
bert_model = AutoModel.from_pretrained('anferico/bert-for-patents')

def encode_texts(texts, max_length=512):
    inputs = tokenizer(texts, padding=True, truncation=True, max_length=max_length, return_tensors='pt')
    with torch.no_grad():
        outputs = bert_model(**inputs)
    embeddings = outputs.last_hidden_state.mean(dim=1)
    return embeddings.numpy()

# Check if the embedding dimensions match
if embeddings.shape[1] != encode_texts(["test"]).shape[1]:
    print("Embedding dimensions do not match. Rebuilding FAISS index.")
    # Rebuild embeddings using the new model
    embeddings = encode_texts(texts)
    embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)

# Normalize embeddings for cosine similarity
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)

# Create FAISS index for cosine similarity
index = faiss.IndexFlatIP(embeddings.shape[1])
index.add(embeddings)

# Create TF-IDF vectorizer
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
tfidf_matrix = tfidf_vectorizer.fit_transform(texts)

def extract_key_features(text):
    # Use Spacy to extract technical terms and phrases
    doc = nlp(text)
    technical_terms = []
    for token in doc:
        if token.dep_ in ('amod', 'compound') or token.ent_type_ in ('PRODUCT', 'ORG', 'GPE', 'NORP'):
            technical_terms.append(token.text.lower())
    noun_phrases = [chunk.text.lower() for chunk in doc.noun_chunks]
    feature_phrases = [sent.text.lower() for sent in doc.sents if re.search(r'(comprising|including|consisting of|deformable|insulation|heat-resistant|memory foam|high-temperature)', sent.text, re.IGNORECASE)]
    
    all_features = technical_terms + noun_phrases + feature_phrases
    return list(set(all_features))

def compare_features(query_features, patent_features):
    common_features = set(query_features) & set(patent_features)
    similarity_score = len(common_features) / max(len(query_features), len(patent_features))
    return common_features, similarity_score

def hybrid_search(query, top_k=5):
    print(f"Original query: {query}")
    
    query_features = extract_key_features(query)
    
    # Encode the query using the transformer model
    query_embedding = encode_texts([query])[0]
    query_embedding = query_embedding / np.linalg.norm(query_embedding)
    
    # Perform semantic similarity search
    semantic_distances, semantic_indices = index.search(np.array([query_embedding]).astype('float32'), top_k * 2)
    
    # Perform TF-IDF based search
    query_tfidf = tfidf_vectorizer.transform([query])
    tfidf_similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
    tfidf_indices = tfidf_similarities.argsort()[-top_k * 2:][::-1]
    
    # Combine and rank results
    combined_results = {}
    for i, idx in enumerate(semantic_indices[0]):
        patent_number = patent_numbers[idx].decode('utf-8')
        text = metadata[patent_number]['text']
        patent_features = extract_key_features(text)
        common_features, feature_similarity = compare_features(query_features, patent_features)
        combined_results[patent_number] = {
            'score': semantic_distances[0][i] * 1.0 + tfidf_similarities[idx] * 0.5 + feature_similarity,
            'common_features': common_features,
            'text': text
        }
    
    for idx in tfidf_indices:
        patent_number = patent_numbers[idx].decode('utf-8')
        if patent_number not in combined_results:
            text = metadata[patent_number]['text']
            patent_features = extract_key_features(text)
            common_features, feature_similarity = compare_features(query_features, patent_features)
            combined_results[patent_number] = {
                'score': tfidf_similarities[idx] * 1.0 + feature_similarity,
                'common_features': common_features,
                'text': text
            }
    
    # Sort and get top results
    top_results = sorted(combined_results.items(), key=lambda x: x[1]['score'], reverse=True)[:top_k]
    
    results = []
    for patent_number, data in top_results:
        result = f"Patent Number: {patent_number}\n"
        result += f"Text: {data['text'][:200]}...\n"
        result += f"Combined Score: {data['score']:.4f}\n"
        result += f"Common Key Features: {', '.join(data['common_features'])}\n\n"
        results.append(result)
    
    return "\n".join(results)

# Create Gradio interface with additional input fields
iface = gr.Interface(
    fn=hybrid_search,
    inputs=[
        gr.Textbox(lines=2, placeholder="Enter your patent query here..."),
        gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Top K Results"),
    ],
    outputs=gr.Textbox(lines=10, label="Search Results"),
    title="Patent Similarity Search",
    description="Enter a patent description to find similar patents based on key features."
)

if __name__ == "__main__":
    iface.launch()