|
import gradio as gr |
|
import numpy as np |
|
import h5py |
|
import faiss |
|
import json |
|
from transformers import AutoTokenizer, AutoModel, AutoModelForMaskedLM |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import re |
|
from collections import Counter |
|
import torch |
|
from nltk.corpus import stopwords |
|
from nltk.tokenize import word_tokenize |
|
import nltk |
|
|
|
|
|
nltk.download('stopwords', quiet=True) |
|
nltk.download('punkt', quiet=True) |
|
|
|
|
|
bert_lemma_model_name = "bert-base-uncased" |
|
bert_lemma_tokenizer = AutoTokenizer.from_pretrained(bert_lemma_model_name) |
|
bert_lemma_model = AutoModelForMaskedLM.from_pretrained(bert_lemma_model_name).to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) |
|
|
|
|
|
bert_encode_model_name = 'anferico/bert-for-patents' |
|
bert_encode_tokenizer = AutoTokenizer.from_pretrained(bert_encode_model_name) |
|
bert_encode_model = AutoModel.from_pretrained(bert_encode_model_name) |
|
|
|
def bert_lemmatize(text): |
|
tokens = bert_lemma_tokenizer.tokenize(text) |
|
input_ids = bert_lemma_tokenizer.convert_tokens_to_ids(tokens) |
|
input_tensor = torch.tensor([input_ids]).to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) |
|
with torch.no_grad(): |
|
outputs = bert_lemma_model(input_tensor) |
|
predictions = outputs.logits.argmax(dim=-1) |
|
lemmatized_tokens = bert_lemma_tokenizer.convert_ids_to_tokens(predictions[0]) |
|
return ' '.join([token for token in lemmatized_tokens if token not in ['[CLS]', '[SEP]', '[PAD]']]) |
|
|
|
def preprocess_query(text): |
|
|
|
text = text.lower() |
|
|
|
|
|
text = re.sub('<.*?>', '', text) |
|
|
|
|
|
text = re.sub(r'[^a-zA-Z0-9\s\-\.\,]', '', text) |
|
|
|
|
|
tokens = word_tokenize(text) |
|
|
|
|
|
stop_words = set(stopwords.words('english')) |
|
tokens = [word for word in tokens if word not in stop_words] |
|
|
|
|
|
processed_text = ' '.join(tokens) |
|
|
|
|
|
processed_text = bert_lemmatize(processed_text) |
|
|
|
return processed_text |
|
|
|
def extract_key_features(text): |
|
|
|
processed_text = preprocess_query(text) |
|
|
|
|
|
features = processed_text.split() |
|
|
|
|
|
features = list(dict.fromkeys(features)) |
|
|
|
return features |
|
|
|
def encode_texts(texts, max_length=512): |
|
inputs = bert_encode_tokenizer(texts, padding=True, truncation=True, max_length=max_length, return_tensors='pt') |
|
with torch.no_grad(): |
|
outputs = bert_encode_model(**inputs) |
|
embeddings = outputs.last_hidden_state.mean(dim=1) |
|
return embeddings.numpy() |
|
|
|
def load_data(): |
|
try: |
|
with h5py.File('patent_embeddings.h5', 'r') as f: |
|
embeddings = f['embeddings'][:] |
|
patent_numbers = f['patent_numbers'][:] |
|
|
|
metadata = {} |
|
texts = [] |
|
with open('patent_metadata.jsonl', 'r') as f: |
|
for line in f: |
|
data = json.loads(line) |
|
metadata[data['patent_number']] = data |
|
texts.append(data['text']) |
|
|
|
print(f"Embedding shape: {embeddings.shape}") |
|
print(f"Number of patent numbers: {len(patent_numbers)}") |
|
print(f"Number of metadata entries: {len(metadata)}") |
|
|
|
return embeddings, patent_numbers, metadata, texts |
|
except FileNotFoundError as e: |
|
print(f"Error: Could not find file. {e}") |
|
raise |
|
except Exception as e: |
|
print(f"An unexpected error occurred while loading data: {e}") |
|
raise |
|
|
|
def compare_features(query_features, patent_features): |
|
common_features = set(query_features) & set(patent_features) |
|
similarity_score = len(common_features) / max(len(query_features), len(patent_features)) |
|
return common_features, similarity_score |
|
|
|
def hybrid_search(query, top_k=5): |
|
print(f"Original query: {query}") |
|
|
|
processed_query = preprocess_query(query) |
|
query_features = extract_key_features(processed_query) |
|
|
|
|
|
query_embedding = encode_texts([processed_query])[0] |
|
query_embedding = query_embedding / np.linalg.norm(query_embedding) |
|
|
|
|
|
semantic_distances, semantic_indices = index.search(np.array([query_embedding]).astype('float32'), top_k * 2) |
|
|
|
|
|
query_tfidf = tfidf_vectorizer.transform([processed_query]) |
|
tfidf_similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten() |
|
tfidf_indices = tfidf_similarities.argsort()[-top_k * 2:][::-1] |
|
|
|
|
|
combined_results = {} |
|
for i, idx in enumerate(semantic_indices[0]): |
|
patent_number = patent_numbers[idx].decode('utf-8') |
|
text = metadata[patent_number]['text'] |
|
patent_features = extract_key_features(text) |
|
common_features, feature_similarity = compare_features(query_features, patent_features) |
|
combined_results[patent_number] = { |
|
'score': semantic_distances[0][i] * 1.0 + tfidf_similarities[idx] * 0.5 + feature_similarity, |
|
'common_features': common_features, |
|
'text': text |
|
} |
|
|
|
for idx in tfidf_indices: |
|
patent_number = patent_numbers[idx].decode('utf-8') |
|
if patent_number not in combined_results: |
|
text = metadata[patent_number]['text'] |
|
patent_features = extract_key_features(text) |
|
common_features, feature_similarity = compare_features(query_features, patent_features) |
|
combined_results[patent_number] = { |
|
'score': tfidf_similarities[idx] * 1.0 + feature_similarity, |
|
'common_features': common_features, |
|
'text': text |
|
} |
|
|
|
|
|
top_results = sorted(combined_results.items(), key=lambda x: x[1]['score'], reverse=True)[:top_k] |
|
|
|
results = [] |
|
for patent_number, data in top_results: |
|
result = f"Patent Number: {patent_number}\n" |
|
result += f"Text: {data['text'][:200]}...\n" |
|
result += f"Combined Score: {data['score']:.4f}\n" |
|
result += f"Common Key Features: {', '.join(data['common_features'])}\n\n" |
|
results.append(result) |
|
|
|
return "\n".join(results) |
|
|
|
|
|
embeddings, patent_numbers, metadata, texts = load_data() |
|
|
|
|
|
if embeddings.shape[1] != encode_texts(["test"]).shape[1]: |
|
print("Embedding dimensions do not match. Rebuilding FAISS index.") |
|
|
|
embeddings = encode_texts(texts) |
|
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True) |
|
|
|
|
|
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True) |
|
|
|
|
|
index = faiss.IndexFlatIP(embeddings.shape[1]) |
|
index.add(embeddings) |
|
|
|
|
|
tfidf_vectorizer = TfidfVectorizer(stop_words='english') |
|
tfidf_matrix = tfidf_vectorizer.fit_transform(texts) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=hybrid_search, |
|
inputs=[ |
|
gr.Textbox(lines=2, placeholder="Enter your patent query here..."), |
|
gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Top K Results"), |
|
], |
|
outputs=gr.Textbox(lines=10, label="Search Results"), |
|
title="Patent Similarity Search", |
|
description="Enter a patent description to find similar patents based on key features." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |