bhlewis's picture
Update app.py
8e3cac5 verified
raw
history blame
8 kB
import gradio as gr
import numpy as np
import h5py
import faiss
import json
from transformers import AutoTokenizer, AutoModel, AutoModelForMaskedLM
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import re
from collections import Counter
import torch
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import nltk
# Download necessary NLTK data
nltk.download('stopwords', quiet=True)
nltk.download('punkt', quiet=True)
# Load BERT model for lemmatization
bert_lemma_model_name = "bert-base-uncased"
bert_lemma_tokenizer = AutoTokenizer.from_pretrained(bert_lemma_model_name)
bert_lemma_model = AutoModelForMaskedLM.from_pretrained(bert_lemma_model_name).to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
# Load BERT model for encoding search queries
bert_encode_model_name = 'anferico/bert-for-patents'
bert_encode_tokenizer = AutoTokenizer.from_pretrained(bert_encode_model_name)
bert_encode_model = AutoModel.from_pretrained(bert_encode_model_name)
def bert_lemmatize(text):
tokens = bert_lemma_tokenizer.tokenize(text)
input_ids = bert_lemma_tokenizer.convert_tokens_to_ids(tokens)
input_tensor = torch.tensor([input_ids]).to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
with torch.no_grad():
outputs = bert_lemma_model(input_tensor)
predictions = outputs.logits.argmax(dim=-1)
lemmatized_tokens = bert_lemma_tokenizer.convert_ids_to_tokens(predictions[0])
return ' '.join([token for token in lemmatized_tokens if token not in ['[CLS]', '[SEP]', '[PAD]']])
def preprocess_query(text):
# Convert to lowercase
text = text.lower()
# Remove any HTML tags (if present)
text = re.sub('<.*?>', '', text)
# Remove special characters, but keep hyphens, periods, and commas
text = re.sub(r'[^a-zA-Z0-9\s\-\.\,]', '', text)
# Tokenize
tokens = word_tokenize(text)
# Remove stopwords, but keep all other words
stop_words = set(stopwords.words('english'))
tokens = [word for word in tokens if word not in stop_words]
# Join tokens back into a string
processed_text = ' '.join(tokens)
# Apply BERT lemmatization
processed_text = bert_lemmatize(processed_text)
return processed_text
def extract_key_features(text):
# For queries, we'll just preprocess and return all non-stopword terms
processed_text = preprocess_query(text)
# Split the processed text into individual terms
features = processed_text.split()
# Remove duplicates while preserving order
features = list(dict.fromkeys(features))
return features
def encode_texts(texts, max_length=512):
inputs = bert_encode_tokenizer(texts, padding=True, truncation=True, max_length=max_length, return_tensors='pt')
with torch.no_grad():
outputs = bert_encode_model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings.numpy()
def load_data():
try:
with h5py.File('patent_embeddings.h5', 'r') as f:
embeddings = f['embeddings'][:]
patent_numbers = f['patent_numbers'][:]
metadata = {}
texts = []
with open('patent_metadata.jsonl', 'r') as f:
for line in f:
data = json.loads(line)
metadata[data['patent_number']] = data
texts.append(data['text'])
print(f"Embedding shape: {embeddings.shape}")
print(f"Number of patent numbers: {len(patent_numbers)}")
print(f"Number of metadata entries: {len(metadata)}")
return embeddings, patent_numbers, metadata, texts
except FileNotFoundError as e:
print(f"Error: Could not find file. {e}")
raise
except Exception as e:
print(f"An unexpected error occurred while loading data: {e}")
raise
def compare_features(query_features, patent_features):
common_features = set(query_features) & set(patent_features)
similarity_score = len(common_features) / max(len(query_features), len(patent_features))
return common_features, similarity_score
def hybrid_search(query, top_k=5):
print(f"Original query: {query}")
processed_query = preprocess_query(query)
query_features = extract_key_features(processed_query)
# Encode the processed query using the transformer model
query_embedding = encode_texts([processed_query])[0]
query_embedding = query_embedding / np.linalg.norm(query_embedding)
# Perform semantic similarity search
semantic_distances, semantic_indices = index.search(np.array([query_embedding]).astype('float32'), top_k * 2)
# Perform TF-IDF based search
query_tfidf = tfidf_vectorizer.transform([processed_query])
tfidf_similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten()
tfidf_indices = tfidf_similarities.argsort()[-top_k * 2:][::-1]
# Combine and rank results
combined_results = {}
for i, idx in enumerate(semantic_indices[0]):
patent_number = patent_numbers[idx].decode('utf-8')
text = metadata[patent_number]['text']
patent_features = extract_key_features(text)
common_features, feature_similarity = compare_features(query_features, patent_features)
combined_results[patent_number] = {
'score': semantic_distances[0][i] * 1.0 + tfidf_similarities[idx] * 0.5 + feature_similarity,
'common_features': common_features,
'text': text
}
for idx in tfidf_indices:
patent_number = patent_numbers[idx].decode('utf-8')
if patent_number not in combined_results:
text = metadata[patent_number]['text']
patent_features = extract_key_features(text)
common_features, feature_similarity = compare_features(query_features, patent_features)
combined_results[patent_number] = {
'score': tfidf_similarities[idx] * 1.0 + feature_similarity,
'common_features': common_features,
'text': text
}
# Sort and get top results
top_results = sorted(combined_results.items(), key=lambda x: x[1]['score'], reverse=True)[:top_k]
results = []
for patent_number, data in top_results:
result = f"Patent Number: {patent_number}\n"
result += f"Text: {data['text'][:200]}...\n"
result += f"Combined Score: {data['score']:.4f}\n"
result += f"Common Key Features: {', '.join(data['common_features'])}\n\n"
results.append(result)
return "\n".join(results)
# Load data and prepare the FAISS index
embeddings, patent_numbers, metadata, texts = load_data()
# Check if the embedding dimensions match
if embeddings.shape[1] != encode_texts(["test"]).shape[1]:
print("Embedding dimensions do not match. Rebuilding FAISS index.")
# Rebuild embeddings using the new model
embeddings = encode_texts(texts)
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
# Normalize embeddings for cosine similarity
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
# Create FAISS index for cosine similarity
index = faiss.IndexFlatIP(embeddings.shape[1])
index.add(embeddings)
# Create TF-IDF vectorizer
tfidf_vectorizer = TfidfVectorizer(stop_words='english')
tfidf_matrix = tfidf_vectorizer.fit_transform(texts)
# Create Gradio interface with additional input fields
iface = gr.Interface(
fn=hybrid_search,
inputs=[
gr.Textbox(lines=2, placeholder="Enter your patent query here..."),
gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Top K Results"),
],
outputs=gr.Textbox(lines=10, label="Search Results"),
title="Patent Similarity Search",
description="Enter a patent description to find similar patents based on key features."
)
if __name__ == "__main__":
iface.launch()