Spaces:
Runtime error
Runtime error
File size: 1,492 Bytes
4f590f0 4aa6857 4f590f0 6a5c7ef 4f590f0 5d2e6f5 4f590f0 f017bc7 4f590f0 3a03628 4f590f0 4aa6857 4f590f0 4aa6857 4f590f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import transformers
import torch
import tokenizers
import gradio as gr
def get_model(model_name, model_path='pytorch_model.bin'):
tokenizer = transformers.GPT2Tokenizer.from_pretrained(model_name)
model = transformers.OPTForCausalLM.from_pretrained(model_name)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
return model, tokenizer
def predict(text, model, tokenizer, n_beams=5, temperature=2.5, top_p=0.8, length_of_generated=300):
text += '\n'
input_ids = tokenizer.encode(text, return_tensors="pt")
length_of_prompt = len(input_ids[0])
with torch.no_grad():
out = model.generate(input_ids,
do_sample=True,
num_beams=n_beams,
temperature=temperature,
top_p=top_p,
max_length=length_of_prompt + length_of_generated,
eos_token_id=tokenizer.eos_token_id
)
return list(map(tokenizer.decode, out))[0]
model, tokenizer = get_model('big-kek/NeuroSkeptic', 'OPT13b-skeptic.bin')
example = 'Who is Bill Gates really?'
demo = gr.Interface(
fn=predict,
inputs=[
gr.components.Textbox(label="what is your interest?",value = example),
],
outputs=[
gr.components.Textbox(label="oh! my ...",interactive = False),
],
)
demo.launch()
|