Spaces:
Runtime error
Runtime error
import json | |
from argparse import ArgumentParser | |
import constants | |
from backend.controlnet import controlnet_settings_from_dict | |
from backend.models.gen_images import ImageFormat | |
from backend.models.lcmdiffusion_setting import DiffusionTask | |
from backend.upscale.tiled_upscale import generate_upscaled_image | |
from constants import APP_VERSION, DEVICE | |
from frontend.webui.image_variations_ui import generate_image_variations | |
from models.interface_types import InterfaceType | |
from paths import FastStableDiffusionPaths | |
from PIL import Image | |
from state import get_context, get_settings | |
from utils import show_system_info | |
from backend.device import get_device_name | |
parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}") | |
parser.add_argument( | |
"-s", | |
"--share", | |
action="store_true", | |
help="Create sharable link(Web UI)", | |
required=False, | |
) | |
group = parser.add_mutually_exclusive_group(required=False) | |
group.add_argument( | |
"-g", | |
"--gui", | |
action="store_true", | |
help="Start desktop GUI", | |
) | |
group.add_argument( | |
"-w", | |
"--webui", | |
action="store_true", | |
help="Start Web UI", | |
) | |
group.add_argument( | |
"-r", | |
"--realtime", | |
action="store_true", | |
help="Start realtime inference UI(experimental)", | |
) | |
group.add_argument( | |
"-v", | |
"--version", | |
action="store_true", | |
help="Version", | |
) | |
parser.add_argument( | |
"-b", | |
"--benchmark", | |
action="store_true", | |
help="Run inference benchmark on the selected device", | |
) | |
parser.add_argument( | |
"--lcm_model_id", | |
type=str, | |
help="Model ID or path,Default stabilityai/sd-turbo", | |
default="stabilityai/sd-turbo", | |
) | |
parser.add_argument( | |
"--openvino_lcm_model_id", | |
type=str, | |
help="OpenVINO Model ID or path,Default rupeshs/sd-turbo-openvino", | |
default="rupeshs/sd-turbo-openvino", | |
) | |
parser.add_argument( | |
"--prompt", | |
type=str, | |
help="Describe the image you want to generate", | |
default="", | |
) | |
parser.add_argument( | |
"--negative_prompt", | |
type=str, | |
help="Describe what you want to exclude from the generation", | |
default="", | |
) | |
parser.add_argument( | |
"--image_height", | |
type=int, | |
help="Height of the image", | |
default=512, | |
) | |
parser.add_argument( | |
"--image_width", | |
type=int, | |
help="Width of the image", | |
default=512, | |
) | |
parser.add_argument( | |
"--inference_steps", | |
type=int, | |
help="Number of steps,default : 1", | |
default=1, | |
) | |
parser.add_argument( | |
"--guidance_scale", | |
type=float, | |
help="Guidance scale,default : 1.0", | |
default=1.0, | |
) | |
parser.add_argument( | |
"--number_of_images", | |
type=int, | |
help="Number of images to generate ,default : 1", | |
default=1, | |
) | |
parser.add_argument( | |
"--seed", | |
type=int, | |
help="Seed,default : -1 (disabled) ", | |
default=-1, | |
) | |
parser.add_argument( | |
"--use_openvino", | |
action="store_true", | |
help="Use OpenVINO model", | |
) | |
parser.add_argument( | |
"--use_offline_model", | |
action="store_true", | |
help="Use offline model", | |
) | |
parser.add_argument( | |
"--use_safety_checker", | |
action="store_true", | |
help="Use safety checker", | |
) | |
parser.add_argument( | |
"--use_lcm_lora", | |
action="store_true", | |
help="Use LCM-LoRA", | |
) | |
parser.add_argument( | |
"--base_model_id", | |
type=str, | |
help="LCM LoRA base model ID,Default Lykon/dreamshaper-8", | |
default="Lykon/dreamshaper-8", | |
) | |
parser.add_argument( | |
"--lcm_lora_id", | |
type=str, | |
help="LCM LoRA model ID,Default latent-consistency/lcm-lora-sdv1-5", | |
default="latent-consistency/lcm-lora-sdv1-5", | |
) | |
parser.add_argument( | |
"-i", | |
"--interactive", | |
action="store_true", | |
help="Interactive CLI mode", | |
) | |
parser.add_argument( | |
"-t", | |
"--use_tiny_auto_encoder", | |
action="store_true", | |
help="Use tiny auto encoder for SD (TAESD)", | |
) | |
parser.add_argument( | |
"-f", | |
"--file", | |
type=str, | |
help="Input image for img2img mode", | |
default="", | |
) | |
parser.add_argument( | |
"--img2img", | |
action="store_true", | |
help="img2img mode; requires input file via -f argument", | |
) | |
parser.add_argument( | |
"--batch_count", | |
type=int, | |
help="Number of sequential generations", | |
default=1, | |
) | |
parser.add_argument( | |
"--strength", | |
type=float, | |
help="Denoising strength for img2img and Image variations", | |
default=0.3, | |
) | |
parser.add_argument( | |
"--sdupscale", | |
action="store_true", | |
help="Tiled SD upscale,works only for the resolution 512x512,(2x upscale)", | |
) | |
parser.add_argument( | |
"--upscale", | |
action="store_true", | |
help="EDSR SD upscale ", | |
) | |
parser.add_argument( | |
"--custom_settings", | |
type=str, | |
help="JSON file containing custom generation settings", | |
default=None, | |
) | |
parser.add_argument( | |
"--usejpeg", | |
action="store_true", | |
help="Images will be saved as JPEG format", | |
) | |
parser.add_argument( | |
"--noimagesave", | |
action="store_true", | |
help="Disable image saving", | |
) | |
parser.add_argument( | |
"--lora", | |
type=str, | |
help="LoRA model full path e.g D:\lora_models\CuteCartoon15V-LiberteRedmodModel-Cartoon-CuteCartoonAF.safetensors", | |
default=None, | |
) | |
parser.add_argument( | |
"--lora_weight", | |
type=float, | |
help="LoRA adapter weight [0 to 1.0]", | |
default=0.5, | |
) | |
args = parser.parse_args() | |
if args.version: | |
print(APP_VERSION) | |
exit() | |
# parser.print_help() | |
show_system_info() | |
print(f"Using device : {constants.DEVICE}") | |
if args.webui: | |
app_settings = get_settings() | |
else: | |
app_settings = get_settings() | |
print(f"Found {len(app_settings.lcm_models)} LCM models in config/lcm-models.txt") | |
print( | |
f"Found {len(app_settings.stable_diffsuion_models)} stable diffusion models in config/stable-diffusion-models.txt" | |
) | |
print( | |
f"Found {len(app_settings.lcm_lora_models)} LCM-LoRA models in config/lcm-lora-models.txt" | |
) | |
print( | |
f"Found {len(app_settings.openvino_lcm_models)} OpenVINO LCM models in config/openvino-lcm-models.txt" | |
) | |
if args.noimagesave: | |
app_settings.settings.generated_images.save_image = False | |
else: | |
app_settings.settings.generated_images.save_image = True | |
if not args.realtime: | |
# To minimize realtime mode dependencies | |
from backend.upscale.upscaler import upscale_image | |
from frontend.cli_interactive import interactive_mode | |
if args.gui: | |
from frontend.gui.ui import start_gui | |
print("Starting desktop GUI mode(Qt)") | |
start_gui( | |
[], | |
app_settings, | |
) | |
elif args.webui: | |
from frontend.webui.ui import start_webui | |
print("Starting web UI mode") | |
start_webui( | |
args.share, | |
) | |
elif args.realtime: | |
from frontend.webui.realtime_ui import start_realtime_text_to_image | |
print("Starting realtime text to image(EXPERIMENTAL)") | |
start_realtime_text_to_image(args.share) | |
else: | |
context = get_context(InterfaceType.CLI) | |
config = app_settings.settings | |
if args.use_openvino: | |
config.lcm_diffusion_setting.openvino_lcm_model_id = args.openvino_lcm_model_id | |
else: | |
config.lcm_diffusion_setting.lcm_model_id = args.lcm_model_id | |
config.lcm_diffusion_setting.prompt = args.prompt | |
config.lcm_diffusion_setting.negative_prompt = args.negative_prompt | |
config.lcm_diffusion_setting.image_height = args.image_height | |
config.lcm_diffusion_setting.image_width = args.image_width | |
config.lcm_diffusion_setting.guidance_scale = args.guidance_scale | |
config.lcm_diffusion_setting.number_of_images = args.number_of_images | |
config.lcm_diffusion_setting.inference_steps = args.inference_steps | |
config.lcm_diffusion_setting.strength = args.strength | |
config.lcm_diffusion_setting.seed = args.seed | |
config.lcm_diffusion_setting.use_openvino = args.use_openvino | |
config.lcm_diffusion_setting.use_tiny_auto_encoder = args.use_tiny_auto_encoder | |
config.lcm_diffusion_setting.use_lcm_lora = args.use_lcm_lora | |
config.lcm_diffusion_setting.lcm_lora.base_model_id = args.base_model_id | |
config.lcm_diffusion_setting.lcm_lora.lcm_lora_id = args.lcm_lora_id | |
config.lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value | |
config.lcm_diffusion_setting.lora.enabled = False | |
config.lcm_diffusion_setting.lora.path = args.lora | |
config.lcm_diffusion_setting.lora.weight = args.lora_weight | |
config.lcm_diffusion_setting.lora.fuse = True | |
if config.lcm_diffusion_setting.lora.path: | |
config.lcm_diffusion_setting.lora.enabled = True | |
if args.usejpeg: | |
config.generated_images.format = ImageFormat.JPEG.value.upper() | |
if args.seed > -1: | |
config.lcm_diffusion_setting.use_seed = True | |
else: | |
config.lcm_diffusion_setting.use_seed = False | |
config.lcm_diffusion_setting.use_offline_model = args.use_offline_model | |
config.lcm_diffusion_setting.use_safety_checker = args.use_safety_checker | |
# Read custom settings from JSON file | |
custom_settings = {} | |
if args.custom_settings: | |
with open(args.custom_settings) as f: | |
custom_settings = json.load(f) | |
# Basic ControlNet settings; if ControlNet is enabled, an image is | |
# required even in txt2img mode | |
config.lcm_diffusion_setting.controlnet = None | |
controlnet_settings_from_dict( | |
config.lcm_diffusion_setting, | |
custom_settings, | |
) | |
# Interactive mode | |
if args.interactive: | |
# wrapper(interactive_mode, config, context) | |
config.lcm_diffusion_setting.lora.fuse = False | |
interactive_mode(config, context) | |
# Start of non-interactive CLI image generation | |
if args.img2img and args.file != "": | |
config.lcm_diffusion_setting.init_image = Image.open(args.file) | |
config.lcm_diffusion_setting.diffusion_task = DiffusionTask.image_to_image.value | |
elif args.img2img and args.file == "": | |
print("Error : You need to specify a file in img2img mode") | |
exit() | |
elif args.upscale and args.file == "" and args.custom_settings == None: | |
print("Error : You need to specify a file in SD upscale mode") | |
exit() | |
elif ( | |
args.prompt == "" | |
and args.file == "" | |
and args.custom_settings == None | |
and not args.benchmark | |
): | |
print("Error : You need to provide a prompt") | |
exit() | |
if args.upscale: | |
# image = Image.open(args.file) | |
output_path = FastStableDiffusionPaths.get_upscale_filepath( | |
args.file, | |
2, | |
config.generated_images.format, | |
) | |
result = upscale_image( | |
context, | |
args.file, | |
output_path, | |
2, | |
) | |
# Perform Tiled SD upscale (EXPERIMENTAL) | |
elif args.sdupscale: | |
if args.use_openvino: | |
config.lcm_diffusion_setting.strength = 0.3 | |
upscale_settings = None | |
if custom_settings != {}: | |
upscale_settings = custom_settings | |
filepath = args.file | |
output_format = config.generated_images.format | |
if upscale_settings: | |
filepath = upscale_settings["source_file"] | |
output_format = upscale_settings["output_format"].upper() | |
output_path = FastStableDiffusionPaths.get_upscale_filepath( | |
filepath, | |
2, | |
output_format, | |
) | |
generate_upscaled_image( | |
config, | |
filepath, | |
config.lcm_diffusion_setting.strength, | |
upscale_settings=upscale_settings, | |
context=context, | |
tile_overlap=32 if config.lcm_diffusion_setting.use_openvino else 16, | |
output_path=output_path, | |
image_format=output_format, | |
) | |
exit() | |
# If img2img argument is set and prompt is empty, use image variations mode | |
elif args.img2img and args.prompt == "": | |
for i in range(0, args.batch_count): | |
generate_image_variations( | |
config.lcm_diffusion_setting.init_image, args.strength | |
) | |
else: | |
if args.benchmark: | |
print("Initializing benchmark...") | |
bench_lcm_setting = config.lcm_diffusion_setting | |
bench_lcm_setting.prompt = "a cat" | |
bench_lcm_setting.use_tiny_auto_encoder = False | |
context.generate_text_to_image( | |
settings=config, | |
device=DEVICE, | |
) | |
latencies = [] | |
print("Starting benchmark please wait...") | |
for _ in range(3): | |
context.generate_text_to_image( | |
settings=config, | |
device=DEVICE, | |
) | |
latencies.append(context.latency) | |
avg_latency = sum(latencies) / 3 | |
bench_lcm_setting.use_tiny_auto_encoder = True | |
context.generate_text_to_image( | |
settings=config, | |
device=DEVICE, | |
) | |
latencies = [] | |
for _ in range(3): | |
context.generate_text_to_image( | |
settings=config, | |
device=DEVICE, | |
) | |
latencies.append(context.latency) | |
avg_latency_taesd = sum(latencies) / 3 | |
benchmark_name = "" | |
if config.lcm_diffusion_setting.use_openvino: | |
benchmark_name = "OpenVINO" | |
else: | |
benchmark_name = "PyTorch" | |
bench_model_id = "" | |
if bench_lcm_setting.use_openvino: | |
bench_model_id = bench_lcm_setting.openvino_lcm_model_id | |
elif bench_lcm_setting.use_lcm_lora: | |
bench_model_id = bench_lcm_setting.lcm_lora.base_model_id | |
else: | |
bench_model_id = bench_lcm_setting.lcm_model_id | |
benchmark_result = [ | |
["Device", f"{DEVICE.upper()},{get_device_name()}"], | |
["Stable Diffusion Model", bench_model_id], | |
[ | |
"Image Size ", | |
f"{bench_lcm_setting.image_width}x{bench_lcm_setting.image_height}", | |
], | |
[ | |
"Inference Steps", | |
f"{bench_lcm_setting.inference_steps}", | |
], | |
[ | |
"Benchmark Passes", | |
3, | |
], | |
[ | |
"Average Latency", | |
f"{round(avg_latency,3)} sec", | |
], | |
[ | |
"Average Latency(TAESD* enabled)", | |
f"{round(avg_latency_taesd,3)} sec", | |
], | |
] | |
print() | |
print( | |
f" FastSD Benchmark - {benchmark_name:8} " | |
) | |
print(f"-" * 80) | |
for benchmark in benchmark_result: | |
print(f"{benchmark[0]:35} - {benchmark[1]}") | |
print(f"-" * 80) | |
print("*TAESD - Tiny AutoEncoder for Stable Diffusion") | |
else: | |
for i in range(0, args.batch_count): | |
context.generate_text_to_image( | |
settings=config, | |
device=DEVICE, | |
) | |