File size: 4,527 Bytes
4e0c974
2edeee0
bdaa2e2
2edeee0
4e0c974
ecb3b61
bdaa2e2
2edeee0
 
e046093
96655e4
bdaa2e2
 
2edeee0
bdaa2e2
 
 
 
 
 
 
 
 
2edeee0
 
 
 
 
 
bdaa2e2
 
 
 
 
 
2edeee0
4e0c974
bdaa2e2
d396a7d
 
 
 
bdaa2e2
 
2edeee0
bdaa2e2
 
2edeee0
7df9f15
88c5489
4e0c974
2edeee0
 
4e0c974
88c5489
 
2edeee0
 
bdaa2e2
2edeee0
 
bdaa2e2
 
 
e046093
 
 
 
96655e4
bdaa2e2
 
6f54b8e
bdaa2e2
 
6f54b8e
bdaa2e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f54b8e
 
 
 
 
 
 
 
 
 
 
 
2edeee0
 
bdaa2e2
e046093
bdaa2e2
2edeee0
bdaa2e2
7df9f15
2edeee0
d363ee6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import aiohttp
import asyncio
import json, os
import yaml
import google.generativeai as palm
from App.Embedding.utils.Initialize import search

PALM_API = ""
API_KEY = os.environ.get("PALM_API", PALM_API)
GroqAPIKey = os.environ.get("Groq_API", "")
# palm.configure(api_key=API_KEY)


class GenerativeAIAssistant:
    def __init__(
        self,
        api_key=API_KEY,
        model="gemini-pro",
        temperature=0.85,
        candidate_count=1,
        top_k=40,
        top_p=0.95,
    ):
        self.api_key = api_key
        self.model = model
        self.temperature = temperature
        self.candidate_count = candidate_count
        self.top_k = top_k
        self.top_p = top_p
        self.examples = [
            {
                "input": {"content": "hello"},
                "output": {"content": "Hello to you too! How can I help you today?"},
            }
        ]
        self.context = "You are a helpful assistant"

    def generate_template(self, question, task_id, summary=None):
        if summary == None:
            self.context = "You are a helpful assistant"
        else:
            self.context = summary
        contexts = search(question, task_id=task_id)
        context_yaml = ""
        for context in contexts:
            context_yaml += "\n" + yaml.dump(context)
        Template = f""" 
      #Instructions
      You are given the following context in yaml of a transcript of a youtube video, the start and end times are indicated and the text that was said is also given. You are also given a question, use the context to answer the question in a consise manner, make it short and to the point, don't provide additional details. If its just a conversational question,ignore the context, respond with the appropriate response. eg Hello hi, how are you? etc.
     

      #Context
      {context_yaml}

      #Your response be as short as possible and to the point.
      
      #Question
      {question}
        """
        return Template

    async def generate_message(self, messages, task_id="ok"):
        user_message = messages[-1]
        # latest_message = messages[-1]["parts"][0]["text"]
      
        user_message["content"]=self.generate_template(user_message["content"], task_id)
        headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {GroqAPIKey}",
        }
        # user_message["parts"][0]["text"] = latest_message
        messages[-1]=user_message
        # url = f'https://generativelanguage.googleapis.com/v1beta/models/{self.model}:generateContent?key={self.api_key}'
        url = "https://api.groq.com/openai/v1/chat/completions"
        payload = {
            "messages": messages,
            "model": "mixtral-8x7b-32768",
        }
        # payload = {
        #     "contents": messages,
        #     "generationConfig": {
        #         "temperature": 0.9,
        #         "topK": 1,
        #         "topP": 1,
        #         "maxOutputTokens": 2048,
        #         "stopSequences": [],
        #     },
        #     "safetySettings": [
        #         {
        #             "category": "HARM_CATEGORY_HARASSMENT",
        #             "threshold": "BLOCK_ONLY_HIGH",
        #         },
        #         {
        #             "category": "HARM_CATEGORY_HATE_SPEECH",
        #             "threshold": "BLOCK_ONLY_HIGH",
        #         },
        #         {
        #             "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
        #             "threshold": "BLOCK_ONLY_HIGH",
        #         },
        #         {
        #             "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
        #             "threshold": "BLOCK_ONLY_HIGH",
        #         },
        #     ],
        # }

        # data = {
        #     "prompt": {
        #         "context": self.context,
        #         "examples": self.examples,
        #         "messages": messages
        #     },
        #     "temperature": self.temperature,
        #     "top_k": self.top_k,
        #     "top_p": self.top_p,
        #     "candidate_count": self.candidate_count
        # }

        async with aiohttp.ClientSession() as session:
            async with session.post(
                url, json=payload, headers=headers
            ) as response:
                try:
                    temp = await response.json()
                    return temp["choices"][0]['message']["content"]
                except Exception as e:
                    return f"Error ⚠️ {e} {temp}"