bla commited on
Commit
41d120a
·
verified ·
1 Parent(s): 084147e

Update App/Embedding/utils/Initialize.py

Browse files
Files changed (1) hide show
  1. App/Embedding/utils/Initialize.py +6 -5
App/Embedding/utils/Initialize.py CHANGED
@@ -1,7 +1,7 @@
1
  from langchain.embeddings import HuggingFaceEmbeddings
2
  from langchain.docstore.document import Document
3
  from langchain.vectorstores import Pinecone
4
-
5
  import pinecone
6
  import os
7
 
@@ -18,10 +18,11 @@ async def delete_documents(task_id):
18
  index_name = "transcript-bits"
19
  model_name = "thenlper/gte-base"
20
  embeddings = HuggingFaceEmbeddings(model_name=model_name)
 
21
 
22
 
23
- pc=pinecone.Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
24
- vector_index = pc.Index(index_name=index_name)
25
  docsearch = Pinecone.from_existing_index(index_name, embeddings)
26
 
27
  docsearch.delete(
@@ -65,7 +66,7 @@ def search(query: str, task_id: str):
65
 
66
 
67
  pc=pinecone.Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
68
- vector_index = pc.Index(index_name=index_name)
69
  docsearch = Pinecone.from_existing_index(index_name, embeddings)
70
 
71
  filtering_conditions = {
@@ -91,7 +92,7 @@ def encode(temp: list[Document]):
91
 
92
 
93
  pc=pinecone.Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
94
- vector_index = pc.Index(index_name=index_name)
95
  docsearch = Pinecone.from_existing_index(index_name, embeddings)
96
  docsearch.add_documents(temp)
97
  # return embeddings.embed_documents(texts = [d.page_content for d in temp])
 
1
  from langchain.embeddings import HuggingFaceEmbeddings
2
  from langchain.docstore.document import Document
3
  from langchain.vectorstores import Pinecone
4
+ from pinecone import PodSpec
5
  import pinecone
6
  import os
7
 
 
18
  index_name = "transcript-bits"
19
  model_name = "thenlper/gte-base"
20
  embeddings = HuggingFaceEmbeddings(model_name=model_name)
21
+ spec = PodSpec()
22
 
23
 
24
+ pc=pinecone.Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV,spec=spec)
25
+ vector_index = pc.Index(index_name)
26
  docsearch = Pinecone.from_existing_index(index_name, embeddings)
27
 
28
  docsearch.delete(
 
66
 
67
 
68
  pc=pinecone.Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
69
+ vector_index = pc.Index(index_name)
70
  docsearch = Pinecone.from_existing_index(index_name, embeddings)
71
 
72
  filtering_conditions = {
 
92
 
93
 
94
  pc=pinecone.Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
95
+ vector_index = pc.Index(index_name)
96
  docsearch = Pinecone.from_existing_index(index_name, embeddings)
97
  docsearch.add_documents(temp)
98
  # return embeddings.embed_documents(texts = [d.page_content for d in temp])