Spaces:
Running
Running
File size: 25,360 Bytes
9c14dee 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 9c14dee 7715eea 9c14dee 3094566 9c14dee 7715eea 005ff51 7715eea 005ff51 9c14dee 7715eea 005ff51 7715eea 005ff51 7715eea 005ff51 7715eea 005ff51 9c14dee 7715eea 9c14dee 7715eea 9c14dee 7715eea 9c14dee 7715eea 005ff51 9c14dee 005ff51 1ca95e4 6962f1b 005ff51 1ca95e4 005ff51 7715eea 9c14dee 7715eea 9c14dee 7715eea 9c14dee 7715eea 9c14dee 7715eea 9c14dee 7715eea 9c14dee 939d2b5 9c14dee 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 9c14dee 92767db 9c14dee 92767db 9c14dee 92767db 9c14dee 0010667 9c14dee 0010667 9c14dee 939d2b5 9c14dee 0010667 9c14dee 92767db 9c14dee 92767db 9c14dee 92767db 9c14dee 92767db 9c14dee 0010667 9c14dee 0010667 9c14dee 92767db 9c14dee 92767db 9c14dee 92767db 9c14dee 92767db 0010667 92767db 0010667 92767db 0010667 92767db 0010667 92767db 9c14dee 92767db 9c14dee 92767db 9c14dee 9c4d474 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
import os
import cv2
import torch
import numpy as np
import gradio as gr
from PIL import Image
import matplotlib.pyplot as plt
from transformers import AutoModel, AutoProcessor
from ultralytics import YOLO
# Custom CSS for shadcn/Radix UI inspired look
custom_css = """
:root {
--primary: #0f172a;
--primary-foreground: #f8fafc;
--background: #f8fafc;
--card: #ffffff;
--card-foreground: #0f172a;
--border: #e2e8f0;
--ring: #94a3b8;
--radius: 0.5rem;
}
.dark {
--primary: #f8fafc;
--primary-foreground: #0f172a;
--background: #0f172a;
--card: #1e293b;
--card-foreground: #f8fafc;
--border: #334155;
--ring: #94a3b8;
}
.gradio-container {
margin: 0 !important;
padding: 0 !important;
max-width: 100% !important;
}
.main-container {
background-color: var(--background);
border-radius: var(--radius);
padding: 1.5rem;
}
.header {
margin-bottom: 1.5rem;
border-bottom: 1px solid var(--border);
padding-bottom: 1rem;
}
.header h1 {
font-size: 1.875rem;
font-weight: 700;
color: var(--primary);
margin-bottom: 0.5rem;
}
.header p {
color: var(--card-foreground);
opacity: 0.8;
}
.tab-nav {
background-color: var(--card);
border: 1px solid var(--border);
border-radius: var(--radius);
padding: 0.25rem;
margin-bottom: 1.5rem;
}
.tab-nav button {
border-radius: calc(var(--radius) - 0.25rem) !important;
font-weight: 500 !important;
transition: all 0.2s ease-in-out !important;
}
.tab-nav button.selected {
background-color: var(--primary) !important;
color: var(--primary-foreground) !important;
}
.input-panel, .output-panel {
background-color: var(--card);
border: 1px solid var(--border);
border-radius: var(--radius);
padding: 1.5rem;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.05);
}
.gr-button-primary {
background-color: var(--primary) !important;
color: var(--primary-foreground) !important;
border-radius: var(--radius) !important;
font-weight: 500 !important;
transition: all 0.2s ease-in-out !important;
}
.gr-button-primary:hover {
opacity: 0.9 !important;
}
.gr-form {
border: none !important;
background: transparent !important;
}
.gr-input, .gr-select {
border: 1px solid var(--border) !important;
border-radius: var(--radius) !important;
padding: 0.5rem 0.75rem !important;
}
.gr-panel {
border: none !important;
}
.footer {
margin-top: 1.5rem;
border-top: 1px solid var(--border);
padding-top: 1rem;
font-size: 0.875rem;
color: var(--card-foreground);
opacity: 0.7;
}"""
# Custom CSS for a more modern UI inspired by NextUI
custom_css = """
:root {
--primary: #0070f3;
--primary-foreground: #ffffff;
--background: #f5f5f5;
--card: #ffffff;
--card-foreground: #111111;
--border: #eaeaea;
--ring: #0070f3;
--shadow: 0 4px 14px 0 rgba(0, 118, 255, 0.1);
}
.dark {
--primary: #0070f3;
--primary-foreground: #ffffff;
--background: #000000;
--card: #111111;
--card-foreground: #ffffff;
--border: #333333;
--ring: #0070f3;
}
.gradio-container {
margin: 0 !important;
padding: 0 !important;
max-width: 100% !important;
}
.main-container {
background-color: var(--background);
padding: 2rem;
}
.header {
margin-bottom: 2rem;
text-align: center;
}
.header h1 {
font-size: 2.5rem;
font-weight: 800;
color: var(--card-foreground);
margin-bottom: 0.5rem;
background: linear-gradient(to right, #0070f3, #00bfff);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.header p {
color: var(--card-foreground);
opacity: 0.8;
font-size: 1.1rem;
}
.tab-nav {
background-color: var(--card);
border-radius: var(--radius);
padding: 0.5rem;
margin-bottom: 2rem;
box-shadow: var(--shadow);
}
.tab-nav button {
border-radius: var(--radius) !important;
font-weight: 600 !important;
transition: all 0.2s ease-in-out !important;
padding: 0.75rem 1.5rem !important;
}
.tab-nav button.selected {
background-color: var(--primary) !important;
color: var(--primary-foreground) !important;
transform: translateY(-2px);
box-shadow: 0 4px 14px 0 rgba(0, 118, 255, 0.25);
}
.input-panel, .output-panel {
background-color: var(--card);
border-radius: var(--radius);
padding: 1.5rem;
box-shadow: var(--shadow);
height: 100%;
display: flex;
flex-direction: column;
}
.input-panel h3, .output-panel h3 {
font-size: 1.25rem;
font-weight: 600;
margin-bottom: 1rem;
color: var(--card-foreground);
border-bottom: 2px solid var(--primary);
padding-bottom: 0.5rem;
display: inline-block;
}
.gr-button-primary {
background-color: var(--primary) !important;
color: var(--primary-foreground) !important;
border-radius: var(--radius) !important;
font-weight: 600 !important;
transition: all 0.2s ease-in-out !important;
padding: 0.75rem 1.5rem !important;
box-shadow: 0 4px 14px 0 rgba(0, 118, 255, 0.25) !important;
width: 100%;
margin-top: 1rem;
}
.gr-button-primary:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 20px rgba(0, 118, 255, 0.35) !important;
}
.gr-form {
border: none !important;
background: transparent !important;
}
.gr-input, .gr-select {
border: 1px solid var(--border) !important;
border-radius: var(--radius) !important;
padding: 0.75rem 1rem !important;
transition: all 0.2s ease-in-out !important;
}
.gr-input:focus, .gr-select:focus {
border-color: var(--primary) !important;
box-shadow: 0 0 0 2px rgba(0, 118, 255, 0.25) !important;
}
.gr-panel {
border: none !important;
}
.gr-accordion {
border: 1px solid var(--border) !important;
border-radius: var(--radius) !important;
overflow: hidden;
}
.footer {
margin-top: 2rem;
border-top: 1px solid var(--border);
padding-top: 1.5rem;
font-size: 0.9rem;
color: var(--card-foreground);
opacity: 0.7;
text-align: center;
}
.footer-card {
background-color: var(--card);
border-radius: var(--radius);
padding: 1.5rem;
box-shadow: var(--shadow);
}
.tips-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 1rem;
margin-top: 1rem;
}
.tip-card {
background-color: var(--card);
border-radius: var(--radius);
padding: 1rem;
border-left: 3px solid var(--primary);
}
"""
# Available model sizes
DETECTION_MODELS = {
"small": "yolov8s-worldv2.pt",
"medium": "yolov8m-worldv2.pt",
"large": "yolov8l-worldv2.pt",
"xlarge": "yolov8x-worldv2.pt",
}
SEGMENTATION_MODELS = {
"YOLOv8 Nano": "yolov8n-seg.pt",
"YOLOv8 Small": "yolov8s-seg.pt",
"YOLOv8 Medium": "yolov8m-seg.pt",
"YOLOv8 Large": "yolov8l-seg.pt",
}
class YOLOWorldDetector:
def __init__(self, model_size="small"):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model_size = model_size
self.model_name = DETECTION_MODELS[model_size]
print(f"Loading {self.model_name} on {self.device}...")
try:
# Try to load using Ultralytics YOLOWorld
from ultralytics import YOLOWorld
self.model = YOLOWorld(self.model_name)
self.model_type = "yoloworld"
print("YOLOWorld model loaded successfully!")
except Exception as e:
print(f"Error loading YOLOWorld model: {e}")
print("Falling back to standard YOLOv8 for detection...")
# Fallback to YOLOv8
self.model = YOLO("yolov8n.pt")
self.model_type = "yolov8"
print("YOLOv8 fallback model loaded successfully!")
# Segmentation models
self.seg_models = {}
def change_model(self, model_size):
if model_size != self.model_size:
self.model_size = model_size
self.model_name = DETECTION_MODELS[model_size]
print(f"Loading {self.model_name} on {self.device}...")
try:
# Try to load using Ultralytics YOLOWorld
from ultralytics import YOLOWorld
self.model = YOLOWorld(self.model_name)
self.model_type = "yoloworld"
print("YOLOWorld model loaded successfully!")
except Exception as e:
print(f"Error loading YOLOWorld model: {e}")
print("Falling back to standard YOLOv8 for detection...")
# Fallback to YOLOv8
self.model = YOLO("yolov8n.pt")
self.model_type = "yolov8"
print("YOLOv8 fallback model loaded successfully!")
return f"Using {self.model_name} model"
def load_seg_model(self, model_name):
if model_name not in self.seg_models:
print(f"Loading segmentation model {model_name}...")
self.seg_models[model_name] = YOLO(SEGMENTATION_MODELS[model_name])
print(f"Segmentation model {model_name} loaded successfully!")
return self.seg_models[model_name]
def detect(self, image, text_prompt, confidence_threshold=0.3):
if image is None:
return None, "No image provided"
# Process the image
if isinstance(image, str):
img_for_json = cv2.imread(image)
elif isinstance(image, np.ndarray):
img_for_json = image.copy()
else:
# Convert PIL Image to numpy array if needed
img_for_json = np.array(image)
# Run inference based on model type
if self.model_type == "yoloworld":
try:
# Parse text prompt properly for YOLOWorld
if text_prompt and text_prompt.strip():
# Split by comma and strip whitespace
classes = [cls.strip() for cls in text_prompt.split(',') if cls.strip()]
else:
classes = None
self.model.set_classes(classes)
# YOLOWorld supports text prompts
results = self.model.predict(
source=image,
conf=confidence_threshold,
)
except Exception as e:
print(f"Error during YOLOWorld inference: {e}")
print("Falling back to standard YOLO inference...")
# If YOLOWorld inference fails, use standard YOLO
results = self.model.predict(
source=image,
conf=confidence_threshold,
verbose=False
)
else:
# Standard YOLO doesn't use text prompts
results = self.model.predict(
source=image,
conf=confidence_threshold,
verbose=False
)
# Get the plotted result
res_plotted = results[0].plot()
# Convert results to JSON format (percentages)
json_results = []
img_height, img_width = img_for_json.shape[:2]
for i, (box, cls, conf) in enumerate(zip(
results[0].boxes.xyxy.cpu().numpy(),
results[0].boxes.cls.cpu().numpy(),
results[0].boxes.conf.cpu().numpy()
)):
x1, y1, x2, y2 = box
json_results.append({
"bbox": {
"x": (x1 / img_width) * 100,
"y": (y1 / img_height) * 100,
"width": ((x2 - x1) / img_width) * 100,
"height": ((y2 - y1) / img_height) * 100
},
"score": float(conf),
"label": int(cls),
"label_text": results[0].names[int(cls)]
})
return res_plotted, json_results
def segment(self, image, model_name, confidence_threshold=0.3):
if image is None:
return None, "No image provided"
# Load segmentation model if not already loaded
model = self.load_seg_model(model_name)
# Run inference
results = model(image, conf=confidence_threshold)
# Create visualization
fig, ax = plt.subplots(1, 1, figsize=(12, 9))
ax.axis('off')
# Plot segmentation results
res_plotted = results[0].plot()
# Convert results to JSON format (percentages)
json_results = []
if hasattr(results[0], 'masks') and results[0].masks is not None:
img_height, img_width = results[0].orig_shape
for i, (box, mask, cls, conf) in enumerate(zip(
results[0].boxes.xyxy.cpu().numpy(),
results[0].masks.data.cpu().numpy(),
results[0].boxes.cls.cpu().numpy(),
results[0].boxes.conf.cpu().numpy()
)):
x1, y1, x2, y2 = box
# Convert mask to polygon for SVG-like representation
# Simplified approach - in production you might want a more sophisticated polygon extraction
contours, _ = cv2.findContours((mask > 0.5).astype(np.uint8),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
if contours:
# Get the largest contour
largest_contour = max(contours, key=cv2.contourArea)
# Simplify the contour
epsilon = 0.005 * cv2.arcLength(largest_contour, True)
approx = cv2.approxPolyDP(largest_contour, epsilon, True)
# Convert to percentage coordinates
points = []
for point in approx:
x, y = point[0]
points.append({
"x": (x / img_width) * 100,
"y": (y / img_height) * 100
})
json_results.append({
"bbox": {
"x": (x1 / img_width) * 100,
"y": (y1 / img_height) * 100,
"width": ((x2 - x1) / img_width) * 100,
"height": ((y2 - y1) / img_height) * 100
},
"score": float(conf),
"label": int(cls),
"label_text": results[0].names[int(cls)],
"polygon": points
})
return res_plotted, json_results
# Initialize detector with default model
detector = YOLOWorldDetector(model_size="small")
def create_svg_from_detections(json_results, img_width, img_height):
"""Convert detection results to SVG format"""
svg_header = f'<svg width="{img_width}" height="{img_height}" xmlns="http://www.w3.org/2000/svg">'
svg_content = ""
# Color palette for different classes
colors = [
"#FF3B30", "#FF9500", "#FFCC00", "#4CD964",
"#5AC8FA", "#007AFF", "#5856D6", "#FF2D55"
]
for i, result in enumerate(json_results):
bbox = result["bbox"]
label = result.get("label_text", f"Object {i}")
score = result.get("score", 0)
# Convert percentage to absolute coordinates
x = (bbox["x"] / 100) * img_width
y = (bbox["y"] / 100) * img_height
width = (bbox["width"] / 100) * img_width
height = (bbox["height"] / 100) * img_height
# Select color based on class index
color = colors[i % len(colors)]
# Create rectangle element
svg_content += f'''
<rect
x="{x:.2f}"
y="{y:.2f}"
width="{width:.2f}"
height="{height:.2f}"
stroke="{color}"
stroke-width="2"
fill="none"
data-label="{label}"
data-score="{score:.2f}"
/>
<text
x="{x:.2f}"
y="{y-5:.2f}"
font-family="Arial"
font-size="12"
fill="{color}"
>{label} ({score:.2f})</text>'''
svg_footer = "\n</svg>"
return svg_header + svg_content + svg_footer
def create_svg_from_segmentation(json_results, img_width, img_height):
"""Convert segmentation results to SVG format"""
svg_header = f'<svg width="{img_width}" height="{img_height}" xmlns="http://www.w3.org/2000/svg">'
svg_content = ""
# Color palette for different classes
colors = [
"#FF3B30", "#FF9500", "#FFCC00", "#4CD964",
"#5AC8FA", "#007AFF", "#5856D6", "#FF2D55"
]
for i, result in enumerate(json_results):
label = result.get("label_text", f"Object {i}")
score = result.get("score", 0)
# Select color based on class index
color = colors[i % len(colors)]
# Create polygon if available
if "polygon" in result:
points_str = " ".join([
f"{(p['x']/100)*img_width:.2f},{(p['y']/100)*img_height:.2f}"
for p in result["polygon"]
])
svg_content += f'''
<polygon
points="{points_str}"
stroke="{color}"
stroke-width="2"
fill="{color}33"
data-label="{label}"
data-score="{score:.2f}"
/>'''
# Also add bounding box
bbox = result["bbox"]
x = (bbox["x"] / 100) * img_width
y = (bbox["y"] / 100) * img_height
width = (bbox["width"] / 100) * img_width
height = (bbox["height"] / 100) * img_height
svg_content += f'''
<rect
x="{x:.2f}"
y="{y:.2f}"
width="{width:.2f}"
height="{height:.2f}"
stroke="{color}"
stroke-width="1"
fill="none"
stroke-dasharray="5,5"
/>
<text
x="{x:.2f}"
y="{y-5:.2f}"
font-family="Arial"
font-size="12"
fill="{color}"
>{label} ({score:.2f})</text>'''
svg_footer = "\n</svg>"
return svg_header + svg_content + svg_footer
def detection_inference(image, text_prompt, confidence, model_size):
# Update model if needed
detector.change_model(model_size)
# Run detection
result_image, json_results = detector.detect(
image,
text_prompt,
confidence_threshold=confidence
)
# Create SVG from detection results
if isinstance(json_results, list) and len(json_results) > 0:
img_height, img_width = result_image.shape[:2]
svg_output = create_svg_from_detections(json_results, img_width, img_height)
else:
svg_output = "<svg></svg>"
return result_image, str(json_results), svg_output
def segmentation_inference(image, confidence, model_name):
# Run segmentation
result_image, json_results = detector.segment(
image,
model_name,
confidence_threshold=confidence
)
# Create SVG from segmentation results
if isinstance(json_results, list) and len(json_results) > 0:
img_height, img_width = result_image.shape[:2]
svg_output = create_svg_from_segmentation(json_results, img_width, img_height)
else:
svg_output = "<svg></svg>"
return result_image, str(json_results), svg_output
# Create Gradio interface
with gr.Blocks(title="YOLO Vision Suite", css=custom_css) as demo:
with gr.Column(elem_classes="main-container"):
with gr.Column(elem_classes="header"):
gr.Markdown("# YOLO Vision Suite")
gr.Markdown("Advanced object detection and segmentation powered by YOLO models")
with gr.Tabs(elem_classes="tab-nav") as tabs:
with gr.TabItem("Object Detection", elem_id="detection-tab"):
with gr.Row(equal_height=True):
with gr.Column(elem_classes="input-panel", scale=1):
gr.Markdown("### Input")
input_image = gr.Image(label="Upload Image", type="numpy", height=300)
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="person, car, dog",
value="person, car, dog",
elem_classes="gr-input"
)
with gr.Row():
confidence = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.3,
step=0.05,
label="Confidence Threshold"
)
model_dropdown = gr.Dropdown(
choices=list(DETECTION_MODELS.keys()),
value="small",
label="Model Size",
elem_classes="gr-select"
)
detect_button = gr.Button("Detect Objects", elem_classes="gr-button-primary")
with gr.Column(elem_classes="output-panel", scale=1):
gr.Markdown("### Results")
output_image = gr.Image(label="Detection Result", height=300)
with gr.Accordion("SVG Output", open=False, elem_classes="gr-accordion"):
svg_output = gr.HTML(label="SVG Visualization")
with gr.Accordion("JSON Output", open=False, elem_classes="gr-accordion"):
json_output = gr.Textbox(
label="Bounding Box Data (Percentage Coordinates)",
elem_classes="gr-input",
lines=5
)
with gr.TabItem("Segmentation", elem_id="segmentation-tab"):
with gr.Row(equal_height=True):
with gr.Column(elem_classes="input-panel", scale=1):
gr.Markdown("### Input")
seg_input_image = gr.Image(label="Upload Image", type="numpy", height=300)
with gr.Row():
seg_confidence = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.3,
step=0.05,
label="Confidence Threshold"
)
seg_model_dropdown = gr.Dropdown(
choices=list(SEGMENTATION_MODELS.keys()),
value="YOLOv8 Small",
label="Model Size",
elem_classes="gr-select"
)
segment_button = gr.Button("Segment Image", elem_classes="gr-button-primary")
with gr.Column(elem_classes="output-panel", scale=1):
gr.Markdown("### Results")
seg_output_image = gr.Image(label="Segmentation Result", height=300)
with gr.Accordion("SVG Output", open=False, elem_classes="gr-accordion"):
seg_svg_output = gr.HTML(label="SVG Visualization")
with gr.Accordion("JSON Output", open=False, elem_classes="gr-accordion"):
seg_json_output = gr.Textbox(
label="Segmentation Data (Percentage Coordinates)",
elem_classes="gr-input",
lines=5
)
with gr.Column(elem_classes="footer"):
with gr.Column(elem_classes="footer-card"):
gr.Markdown("### Tips & Information")
with gr.Row(elem_classes="tips-grid"):
with gr.Column(elem_classes="tip-card"):
gr.Markdown("**Detection**")
gr.Markdown("Enter comma-separated text prompts to specify what objects to detect")
with gr.Column(elem_classes="tip-card"):
gr.Markdown("**Segmentation**")
gr.Markdown("The model will identify and segment common objects automatically")
with gr.Column(elem_classes="tip-card"):
gr.Markdown("**Models**")
gr.Markdown("Larger models provide better accuracy but require more processing power")
with gr.Column(elem_classes="tip-card"):
gr.Markdown("**Output**")
gr.Markdown("JSON output provides coordinates as percentages, compatible with SVG")
# Set up event handlers
detect_button.click(
detection_inference,
inputs=[input_image, text_prompt, confidence, model_dropdown],
outputs=[output_image, json_output, svg_output]
)
segment_button.click(
segmentation_inference,
inputs=[seg_input_image, seg_confidence, seg_model_dropdown],
outputs=[seg_output_image, seg_json_output, seg_svg_output]
)
if __name__ == "__main__":
demo.launch(share=True) # Set share=True to create a public link |