Compiled transformer

#12
by cbensimon HF Staff - opened
Files changed (3) hide show
  1. app.py +8 -0
  2. optimization.py +60 -0
  3. optimization_utils.py +96 -0
app.py CHANGED
@@ -1,3 +1,8 @@
 
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import spaces
@@ -8,9 +13,12 @@ from PIL import Image
8
  from diffusers import FluxKontextPipeline
9
  from diffusers.utils import load_image
10
 
 
 
11
  MAX_SEED = np.iinfo(np.int32).max
12
 
13
  pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
 
14
 
15
  @spaces.GPU
16
  def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
 
1
+ # PyTorch 2.8 (temporary hack)
2
+ import os
3
+ os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
4
+
5
+ # Actual demo code
6
  import gradio as gr
7
  import numpy as np
8
  import spaces
 
13
  from diffusers import FluxKontextPipeline
14
  from diffusers.utils import load_image
15
 
16
+ from optimization import optimize_pipeline_
17
+
18
  MAX_SEED = np.iinfo(np.int32).max
19
 
20
  pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
21
+ optimize_pipeline_(pipe, image=Image.new("RGB", (512, 512)), prompt='prompt')
22
 
23
  @spaces.GPU
24
  def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
optimization.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ """
3
+
4
+ from typing import Any
5
+ from typing import Callable
6
+ from typing import ParamSpec
7
+
8
+ import spaces
9
+ import torch
10
+ from torch.utils._pytree import tree_map_only
11
+
12
+ from optimization_utils import capture_component_call
13
+ from optimization_utils import aoti_compile
14
+
15
+
16
+ P = ParamSpec('P')
17
+
18
+
19
+ TRANSFORMER_HIDDEN_DIM = torch.export.Dim('hidden', min=4096, max=8212)
20
+
21
+ TRANSFORMER_DYNAMIC_SHAPES = {
22
+ 'hidden_states': {1: TRANSFORMER_HIDDEN_DIM},
23
+ 'img_ids': {0: TRANSFORMER_HIDDEN_DIM},
24
+ }
25
+
26
+ INDUCTOR_CONFIGS = {
27
+ 'conv_1x1_as_mm': True,
28
+ 'epilogue_fusion': False,
29
+ 'coordinate_descent_tuning': True,
30
+ 'coordinate_descent_check_all_directions': True,
31
+ 'max_autotune': True,
32
+ 'triton.cudagraphs': True,
33
+ }
34
+
35
+
36
+ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
37
+
38
+ @spaces.GPU(duration=1500)
39
+ def compile_transformer():
40
+
41
+ with capture_component_call(pipeline, 'transformer') as call:
42
+ pipeline(*args, **kwargs)
43
+
44
+ dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
45
+ dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
46
+
47
+ pipeline.transformer.fuse_qkv_projections()
48
+
49
+ exported = torch.export.export(
50
+ mod=pipeline.transformer,
51
+ args=call.args,
52
+ kwargs=call.kwargs,
53
+ dynamic_shapes=dynamic_shapes,
54
+ )
55
+
56
+ return aoti_compile(exported, INDUCTOR_CONFIGS)
57
+
58
+ transformer_config = pipeline.transformer.config
59
+ pipeline.transformer = compile_transformer()
60
+ pipeline.transformer.config = transformer_config # pyright: ignore[reportAttributeAccessIssue]
optimization_utils.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ """
3
+ import contextlib
4
+ from contextvars import ContextVar
5
+ from io import BytesIO
6
+ from typing import Any
7
+ from typing import cast
8
+ from unittest.mock import patch
9
+
10
+ import torch
11
+ from torch._inductor.package.package import package_aoti
12
+ from torch.export.pt2_archive._package import AOTICompiledModel
13
+ from torch.export.pt2_archive._package_weights import TensorProperties
14
+ from torch.export.pt2_archive._package_weights import Weights
15
+
16
+
17
+ INDUCTOR_CONFIGS_OVERRIDES = {
18
+ 'aot_inductor.package_constants_in_so': False,
19
+ 'aot_inductor.package_constants_on_disk': True,
20
+ 'aot_inductor.package': True,
21
+ }
22
+
23
+
24
+ class ZeroGPUCompiledModel:
25
+ def __init__(self, archive_file: torch.types.FileLike, weights: Weights, cuda: bool = False):
26
+ self.archive_file = archive_file
27
+ self.weights = weights
28
+ if cuda:
29
+ self.weights_to_cuda_()
30
+ self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar('compiled_model', default=None)
31
+ def weights_to_cuda_(self):
32
+ for name in self.weights:
33
+ tensor, properties = self.weights.get_weight(name)
34
+ self.weights[name] = (tensor.to('cuda'), properties)
35
+ def __call__(self, *args, **kwargs):
36
+ if (compiled_model := self.compiled_model.get()) is None:
37
+ constants_map = {name: value[0] for name, value in self.weights.items()}
38
+ compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file))
39
+ compiled_model.load_constants(constants_map, check_full_update=True, user_managed=True)
40
+ self.compiled_model.set(compiled_model)
41
+ return compiled_model(*args, **kwargs)
42
+ def __reduce__(self):
43
+ weight_dict: dict[str, tuple[torch.Tensor, TensorProperties]] = {}
44
+ for name in self.weights:
45
+ tensor, properties = self.weights.get_weight(name)
46
+ tensor_ = torch.empty_like(tensor, device='cpu').pin_memory()
47
+ weight_dict[name] = (tensor_.copy_(tensor).detach().share_memory_(), properties)
48
+ return ZeroGPUCompiledModel, (self.archive_file, Weights(weight_dict), True)
49
+
50
+
51
+ def aoti_compile(
52
+ exported_program: torch.export.ExportedProgram,
53
+ inductor_configs: dict[str, Any] | None = None,
54
+ ):
55
+ inductor_configs = (inductor_configs or {}) | INDUCTOR_CONFIGS_OVERRIDES
56
+ gm = cast(torch.fx.GraphModule, exported_program.module())
57
+ assert exported_program.example_inputs is not None
58
+ args, kwargs = exported_program.example_inputs
59
+ artifacts = torch._inductor.aot_compile(gm, args, kwargs, options=inductor_configs)
60
+ archive_file = BytesIO()
61
+ files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)]
62
+ package_aoti(archive_file, files)
63
+ weights, = (artifact for artifact in artifacts if isinstance(artifact, Weights))
64
+ return ZeroGPUCompiledModel(archive_file, weights)
65
+
66
+
67
+ @contextlib.contextmanager
68
+ def capture_component_call(
69
+ pipeline: Any,
70
+ component_name: str,
71
+ component_method='forward',
72
+ ):
73
+
74
+ class CapturedCallException(Exception):
75
+ def __init__(self, *args, **kwargs):
76
+ super().__init__()
77
+ self.args = args
78
+ self.kwargs = kwargs
79
+
80
+ class CapturedCall:
81
+ def __init__(self):
82
+ self.args: tuple[Any, ...] = ()
83
+ self.kwargs: dict[str, Any] = {}
84
+
85
+ component = getattr(pipeline, component_name)
86
+ captured_call = CapturedCall()
87
+
88
+ def capture_call(*args, **kwargs):
89
+ raise CapturedCallException(*args, **kwargs)
90
+
91
+ with patch.object(component, component_method, new=capture_call):
92
+ try:
93
+ yield captured_call
94
+ except CapturedCallException as e:
95
+ captured_call.args = e.args
96
+ captured_call.kwargs = e.kwargs