Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from typing import TYPE_CHECKING | |
from peft import ( | |
PeftModel, | |
TaskType, | |
LoraConfig, | |
get_peft_model | |
) | |
from peft.utils import CONFIG_NAME, WEIGHTS_NAME | |
from llmtuner.extras.logging import get_logger | |
from llmtuner.tuner.core.utils import find_all_linear_modules | |
if TYPE_CHECKING: | |
from transformers.modeling_utils import PreTrainedModel | |
from llmtuner.hparams import ModelArguments, FinetuningArguments | |
logger = get_logger(__name__) | |
def init_adapter( | |
model: "PreTrainedModel", | |
model_args: "ModelArguments", | |
finetuning_args: "FinetuningArguments", | |
is_trainable: bool, | |
is_mergeable: bool | |
) -> "PreTrainedModel": | |
r""" | |
Initializes the adapters. | |
Support full-parameter, freeze and LoRA training. | |
Note that the trainable parameters must be cast to float32. | |
""" | |
if finetuning_args.finetuning_type == "none" and is_trainable: | |
raise ValueError("You cannot use finetuning_type=none while training.") | |
if finetuning_args.finetuning_type == "full" and is_trainable: | |
logger.info("Fine-tuning method: Full") | |
model = model.float() | |
if finetuning_args.finetuning_type == "freeze": | |
logger.info("Fine-tuning method: Freeze") | |
for name, param in model.named_parameters(): | |
if not any(trainable_layer in name for trainable_layer in finetuning_args.trainable_layers): | |
param.requires_grad_(False) | |
else: | |
param.data = param.data.to(torch.float32) | |
if finetuning_args.finetuning_type == "lora": | |
logger.info("Fine-tuning method: LoRA") | |
latest_checkpoint = None | |
if model_args.checkpoint_dir is not None: | |
assert os.path.exists(os.path.join(model_args.checkpoint_dir[0], WEIGHTS_NAME)), \ | |
"Provided path ({}) does not contain a LoRA weight.".format(model_args.checkpoint_dir[0]) | |
assert os.path.exists(os.path.join(model_args.checkpoint_dir[0], CONFIG_NAME)), \ | |
"The given checkpoint may be not a LoRA checkpoint, please specify `--finetuning_type full/freeze` instead." | |
if (is_trainable and finetuning_args.resume_lora_training) or (not is_mergeable): # continually fine-tuning | |
checkpoints_to_merge, latest_checkpoint = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1] | |
else: | |
checkpoints_to_merge = model_args.checkpoint_dir | |
for checkpoint in checkpoints_to_merge: | |
model = PeftModel.from_pretrained(model, checkpoint) | |
model = model.merge_and_unload() | |
if len(checkpoints_to_merge) > 0: | |
logger.info("Merged {} model checkpoint(s).".format(len(checkpoints_to_merge))) | |
if latest_checkpoint is not None: # resume lora training or quantized inference | |
model = PeftModel.from_pretrained(model, latest_checkpoint, is_trainable=is_trainable) | |
if is_trainable and latest_checkpoint is None: # create new lora weights while training | |
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all": | |
target_modules = find_all_linear_modules(model, model_args.quantization_bit) | |
else: | |
target_modules = finetuning_args.lora_target | |
lora_config = LoraConfig( | |
task_type=TaskType.CAUSAL_LM, | |
inference_mode=False, | |
r=finetuning_args.lora_rank, | |
lora_alpha=finetuning_args.lora_alpha, | |
lora_dropout=finetuning_args.lora_dropout, | |
target_modules=target_modules | |
) | |
model = get_peft_model(model, lora_config) | |
if id(model.peft_config) != id(model.base_model.peft_config): # https://github.com/huggingface/peft/issues/923 | |
model.base_model.peft_config = model.peft_config | |
if model_args.checkpoint_dir is not None: | |
logger.info("Loaded fine-tuned model from checkpoint(s): {}".format(",".join(model_args.checkpoint_dir))) | |
return model | |