Spaces:
Runtime error
Runtime error
import os | |
import math | |
import torch | |
from types import MethodType | |
from typing import TYPE_CHECKING, Literal, Optional, Tuple | |
from transformers import ( | |
AutoConfig, | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
BitsAndBytesConfig, | |
PretrainedConfig, | |
PreTrainedModel, | |
PreTrainedTokenizerBase | |
) | |
from transformers.utils import check_min_version | |
from transformers.utils.versions import require_version | |
from trl import AutoModelForCausalLMWithValueHead | |
try: | |
from transformers.integrations import is_deepspeed_zero3_enabled | |
except ImportError: | |
from transformers.deepspeed import is_deepspeed_zero3_enabled | |
from llmtuner.extras.logging import reset_logging, get_logger | |
from llmtuner.extras.misc import count_parameters | |
from llmtuner.extras.save_and_load import load_valuehead_params | |
from llmtuner.hparams import FinetuningArguments | |
from llmtuner.tuner.core.adapter import init_adapter | |
from llmtuner.tuner.core.utils import prepare_model_for_training | |
if TYPE_CHECKING: | |
from transformers import PreTrainedTokenizer | |
from llmtuner.hparams import ModelArguments | |
logger = get_logger(__name__) | |
check_min_version("4.30.0") | |
require_version("datasets>=2.12.0", "To fix: pip install datasets>=2.12.0") | |
require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0") | |
require_version("peft>=0.4.0", "To fix: pip install peft>=0.4.0") | |
require_version("trl>=0.7.1", "To fix: pip install trl>=0.7.1") | |
def load_model_and_tokenizer( | |
model_args: "ModelArguments", | |
finetuning_args: "FinetuningArguments", | |
is_trainable: Optional[bool] = False, | |
stage: Optional[Literal["pt", "sft", "rm", "ppo"]] = "sft" | |
) -> Tuple[PreTrainedModel, "PreTrainedTokenizer"]: | |
r""" | |
Loads pretrained model and tokenizer. | |
Support both training and inference. | |
""" | |
if (not is_trainable) and model_args.checkpoint_dir is None: | |
logger.warning("Checkpoint is not found at evaluation, load the original model.") | |
finetuning_args = FinetuningArguments(finetuning_type="none") | |
config_kwargs = { | |
"trust_remote_code": True, | |
"cache_dir": model_args.cache_dir, | |
"revision": model_args.model_revision, | |
"use_auth_token": True if model_args.use_auth_token else None, | |
} | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
use_fast=model_args.use_fast_tokenizer, | |
padding_side="right", # training with left-padded tensors in fp16 precision may cause overflow | |
**config_kwargs | |
) | |
# Fix tokenizer (for ChatGLM2) | |
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__): | |
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer) | |
if finetuning_args.finetuning_type != "lora" and model_args.checkpoint_dir is not None: | |
model_to_load = model_args.checkpoint_dir[0] | |
else: | |
model_to_load = model_args.model_name_or_path | |
config = AutoConfig.from_pretrained(model_to_load, **config_kwargs) | |
# Fix config (for Qwen) | |
if hasattr(config, "fp16") and hasattr(config, "bf16"): | |
setattr(config, "fp16", model_args.compute_dtype == torch.float16) | |
setattr(config, "bf16", model_args.compute_dtype == torch.bfloat16) | |
# Set RoPE scaling | |
if model_args.rope_scaling is not None: | |
if hasattr(config, "use_dynamic_ntk"): # for Qwen models | |
if is_trainable: | |
logger.warning("Qwen model does not support RoPE scaling in training.") | |
else: | |
setattr(config, "use_dynamic_ntk", True) | |
setattr(config, "use_logn_attn", True) | |
logger.info("Using dynamic NTK scaling.") | |
elif hasattr(config, "rope_scaling"): # for LLaMA and Falcon models | |
require_version("transformers>=4.31.0", "RoPE scaling requires transformers>=4.31.0") | |
if is_trainable: | |
if model_args.rope_scaling == "dynamic": | |
assert not model_args.flash_attn, "Flash attention does not support dynamic rope scaling." | |
logger.warning( | |
"Dynamic NTK may not work well with fine-tuning. " | |
"See: https://github.com/huggingface/transformers/pull/24653" | |
) | |
current_max_length = getattr(config, "max_position_embeddings", None) | |
if current_max_length and model_args.model_max_length > current_max_length: | |
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length)) | |
else: | |
logger.warning("Input length is smaller than max length. Consider increase input length.") | |
scaling_factor = 1.0 | |
else: | |
scaling_factor = 2.0 | |
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor}) | |
logger.info("Using {} scaling strategy and setting scaling factor to {}".format( | |
model_args.rope_scaling, scaling_factor | |
)) | |
else: | |
logger.warning("Current model does not support RoPE scaling.") | |
# Set flash attention | |
if model_args.flash_attn and getattr(config, "model_type", None) == "llama": | |
import transformers.models.llama.modeling_llama as LlamaModule | |
import llmtuner.extras.patches.flash_llama as FlashLlama | |
LlamaModule.LlamaRMSNorm = FlashLlama.LlamaRMSNorm | |
LlamaModule.LlamaAttention = FlashLlama.LlamaAttention | |
LlamaModule.LlamaModel._prepare_decoder_attention_mask = FlashLlama._prepare_decoder_attention_mask | |
if not hasattr(config, "num_key_value_heads"): # for LLaMA-1 models | |
setattr(config, "num_key_value_heads", getattr(config, "num_attention_heads")) | |
if getattr(config, "pretraining_tp", 1) != 1: | |
setattr(config, "pretraining_tp", 1) | |
# Quantization configurations (using bitsandbytes library). | |
is_mergeable = True | |
if model_args.quantization_bit is not None: | |
if is_deepspeed_zero3_enabled(): | |
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.") | |
if model_args.quantization_bit == 8: | |
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0") | |
config_kwargs["load_in_8bit"] = True | |
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True) | |
elif model_args.quantization_bit == 4: | |
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0") | |
config_kwargs["load_in_4bit"] = True | |
config_kwargs["quantization_config"] = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=model_args.compute_dtype, | |
bnb_4bit_use_double_quant=model_args.double_quantization, | |
bnb_4bit_quant_type=model_args.quantization_type | |
) | |
is_mergeable = False | |
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))} if is_trainable else "auto" | |
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit)) | |
# Load and prepare pre-trained models (without valuehead). | |
model = AutoModelForCausalLM.from_pretrained( | |
model_to_load, | |
config=config, | |
torch_dtype=model_args.compute_dtype, | |
low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()), | |
**config_kwargs | |
) | |
# Disable custom generate method (for Qwen) | |
if isinstance(model, PreTrainedModel) and "GenerationMixin" not in str(model.generate.__func__): | |
model.generate = MethodType(PreTrainedModel.generate, model) | |
# Fix LM head (for ChatGLM2) | |
if not hasattr(model, "lm_head") and hasattr(model, "transformer"): | |
setattr(model, "lm_head", model.transformer.output_layer) | |
# Register auto class to save the custom code files. | |
if isinstance(config, PretrainedConfig) and "AutoConfig" in getattr(config, "auto_map", {}): | |
config.__class__.register_for_auto_class() | |
if isinstance(model, PreTrainedModel) and "AutoModelForCausalLM" in getattr(config, "auto_map", {}): | |
model.__class__.register_for_auto_class() | |
if isinstance(tokenizer, PreTrainedTokenizerBase) and "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}): | |
tokenizer.__class__.register_for_auto_class() | |
# Initialize adapters | |
model = prepare_model_for_training(model, finetuning_args.finetuning_type) if is_trainable else model | |
model = init_adapter(model, model_args, finetuning_args, is_trainable, is_mergeable) | |
model = model.train() if is_trainable else model.eval() | |
# Prepare model with valuehead for RLHF | |
if stage == "rm" or stage == "ppo": | |
model = AutoModelForCausalLMWithValueHead.from_pretrained(model) | |
model._keys_to_ignore_on_save = None | |
reset_logging() | |
if stage == "rm" and model_args.checkpoint_dir is not None: # load valuehead weights to evaluate reward model | |
logger.warning("Only the last checkpoint containing valuehead will be loaded.") | |
if load_valuehead_params(model, model_args.checkpoint_dir[-1]): | |
model.v_head.load_state_dict({ | |
"summary.weight": getattr(model, "reward_head_weight"), | |
"summary.bias": getattr(model, "reward_head_bias") | |
}) | |
if stage == "ppo": # load reward model | |
logger.info("Load reward model from {}".format(model_args.reward_model)) | |
if getattr(model, "is_peft_model", False): | |
model.pretrained_model.load_adapter(model_args.reward_model, "reward") | |
assert load_valuehead_params(model, model_args.reward_model), "Reward model is not correctly loaded." | |
# Prepare model for inference | |
if not is_trainable: | |
model.requires_grad_(False) # fix all model params | |
model = model.to(model_args.compute_dtype) if model_args.quantization_bit is None else model | |
trainable_params, all_param = count_parameters(model) | |
logger.info("trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format( | |
trainable_params, all_param, 100 * trainable_params / all_param | |
)) | |
return model, tokenizer | |