Spaces:
Runtime error
Runtime error
# Inspired by: | |
# https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py | |
from typing import TYPE_CHECKING, Optional, List | |
from transformers import Seq2SeqTrainingArguments | |
from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset | |
from llmtuner.extras.callbacks import SavePeftModelCallback | |
from llmtuner.extras.ploting import plot_loss | |
from llmtuner.tuner.core import load_model_and_tokenizer | |
from llmtuner.tuner.rm.metric import compute_accuracy | |
from llmtuner.tuner.rm.collator import PairwiseDataCollatorWithPadding | |
from llmtuner.tuner.rm.trainer import PairwiseTrainer | |
if TYPE_CHECKING: | |
from transformers import TrainerCallback | |
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments | |
def run_rm( | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
finetuning_args: "FinetuningArguments", | |
callbacks: Optional[List["TrainerCallback"]] = None | |
): | |
dataset = get_dataset(model_args, data_args) | |
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="rm") | |
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="rm") | |
data_collator = PairwiseDataCollatorWithPadding(tokenizer) | |
training_args_dict = training_args.to_dict() | |
training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset | |
training_args = Seq2SeqTrainingArguments(**training_args_dict) | |
# Initialize our Trainer | |
trainer = PairwiseTrainer( | |
model=model, | |
args=training_args, | |
tokenizer=tokenizer, | |
data_collator=data_collator, | |
callbacks=callbacks + [SavePeftModelCallback()], | |
compute_metrics=compute_accuracy, | |
**split_dataset(dataset, data_args, training_args) | |
) | |
# Training | |
if training_args.do_train: | |
train_result = trainer.train() | |
trainer.log_metrics("train", train_result.metrics) | |
trainer.save_metrics("train", train_result.metrics) | |
trainer.save_state() | |
trainer.save_model() | |
if trainer.is_world_process_zero() and model_args.plot_loss: | |
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"]) | |
# Evaluation | |
if training_args.do_eval: | |
metrics = trainer.evaluate(metric_key_prefix="eval") | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
# Predict | |
if training_args.do_predict: | |
predict_results = trainer.predict(dataset, metric_key_prefix="predict") | |
trainer.log_metrics("predict", predict_results.metrics) | |
trainer.save_metrics("predict", predict_results.metrics) | |
trainer.save_predictions(predict_results) | |