Spaces:
Runtime error
Runtime error
from typing import TYPE_CHECKING, Dict | |
import gradio as gr | |
from llmtuner.webui.common import list_dataset, DEFAULT_DATA_DIR | |
from llmtuner.webui.components.data import create_preview_box | |
from llmtuner.webui.utils import can_preview, get_preview | |
if TYPE_CHECKING: | |
from gradio.components import Component | |
from llmtuner.webui.runner import Runner | |
def create_eval_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[str, "Component"]: | |
with gr.Row(): | |
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2) | |
dataset = gr.Dropdown(multiselect=True, scale=4) | |
data_preview_btn = gr.Button(interactive=False, scale=1) | |
preview_box, preview_count, preview_samples, close_btn = create_preview_box() | |
dataset_dir.change(list_dataset, [dataset_dir], [dataset]) | |
dataset.change(can_preview, [dataset_dir, dataset], [data_preview_btn]) | |
data_preview_btn.click( | |
get_preview, | |
[dataset_dir, dataset], | |
[preview_count, preview_samples, preview_box], | |
queue=False | |
) | |
with gr.Row(): | |
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1) | |
max_samples = gr.Textbox(value="100000") | |
batch_size = gr.Slider(value=8, minimum=1, maximum=512, step=1) | |
predict = gr.Checkbox(value=True) | |
with gr.Row(): | |
max_new_tokens = gr.Slider(10, 2048, value=128, step=1) | |
top_p = gr.Slider(0.01, 1, value=0.7, step=0.01) | |
temperature = gr.Slider(0.01, 1.5, value=0.95, step=0.01) | |
with gr.Row(): | |
cmd_preview_btn = gr.Button() | |
start_btn = gr.Button() | |
stop_btn = gr.Button() | |
with gr.Row(): | |
process_bar = gr.Slider(visible=False, interactive=False) | |
with gr.Box(): | |
output_box = gr.Markdown() | |
input_components = [ | |
top_elems["lang"], | |
top_elems["model_name"], | |
top_elems["checkpoints"], | |
top_elems["finetuning_type"], | |
top_elems["quantization_bit"], | |
top_elems["template"], | |
top_elems["system_prompt"], | |
dataset_dir, | |
dataset, | |
cutoff_len, | |
max_samples, | |
batch_size, | |
predict, | |
max_new_tokens, | |
top_p, | |
temperature | |
] | |
output_components = [ | |
output_box, | |
process_bar | |
] | |
cmd_preview_btn.click(runner.preview_eval, input_components, output_components) | |
start_btn.click(runner.run_eval, input_components, output_components) | |
stop_btn.click(runner.set_abort, queue=False) | |
return dict( | |
dataset_dir=dataset_dir, | |
dataset=dataset, | |
data_preview_btn=data_preview_btn, | |
preview_count=preview_count, | |
preview_samples=preview_samples, | |
close_btn=close_btn, | |
cutoff_len=cutoff_len, | |
max_samples=max_samples, | |
batch_size=batch_size, | |
predict=predict, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
temperature=temperature, | |
cmd_preview_btn=cmd_preview_btn, | |
start_btn=start_btn, | |
stop_btn=stop_btn, | |
output_box=output_box | |
) | |