Spaces:
Runtime error
Runtime error
File size: 1,257 Bytes
f3d628e fcecd40 80f8209 f3d628e 80f8209 28f3fdc 80f8209 f3d628e 80f8209 f3d628e aa90abd 9d4445b 80f8209 aa90abd 9d4445b 80f8209 f3d628e 28f3fdc f3d628e 28f3fdc f3d628e 28f3fdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import streamlit as st
import torch
from sentence_transformers import SentenceTransformer
# Load SBERT model (choose a suitable model from https://www.sbert.net/docs/pretrained_models.html)
@st.cache_resource
def load_sbert():
model = SentenceTransformer('all-MiniLM-L6-v2') # Example model
return model
model = load_sbert()
def calculate_similarity(word1, word2):
embeddings1 = model.encode(word1)
embeddings2 = model.encode(word2)
# Convert NumPy arrays to tensors
embeddings1 = torch.tensor(embeddings1)
embeddings2 = torch.tensor(embeddings2)
cos_sim = torch.nn.functional.cosine_similarity(embeddings1, embeddings2, dim=0)
return cos_sim.item()
# Streamlit interface
st.title("Word Similarity Checker")
reference_word = st.text_input("Enter the reference word:")
word_list = st.text_area("Enter a list of words (one word per line):")
if st.button("Analyze"):
if reference_word and word_list:
words = word_list.splitlines()
for word in words:
similarity = calculate_similarity(reference_word, word)
st.write(f"Similarity between '{reference_word}' and '{word}': {similarity:.4f}")
else:
st.warning("Please enter a reference word and a list of words.")
|