File size: 3,325 Bytes
564ce0c
569a26f
564ce0c
 
 
c2b8ffb
569a26f
c2b8ffb
 
 
 
569a26f
c2b8ffb
 
 
 
569a26f
c2b8ffb
9502681
c2b8ffb
 
9502681
 
 
c2b8ffb
 
9502681
 
c2b8ffb
9502681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569a26f
 
 
 
 
 
 
c2b8ffb
569a26f
470e7a0
 
 
 
 
 
 
 
569a26f
2b108c5
c2b8ffb
7c393ac
c2b8ffb
 
569a26f
 
c2b8ffb
569a26f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import json
import streamlit as st
from google.oauth2 import service_account
from google.cloud import language_v1

# Header and intro
st.title("Google Cloud NLP Entity Analyzer")
st.write("## Introduction to the Knowledge Graph API")
st.write("---")
st.write("""
The Google Knowledge Graph API reveals entity information related to a keyword, that Google knows about.
This information can be very useful for SEO – discovering related topics and what Google believes is relevant.
It can also help when trying to claim/win a Knowledge Graph box on search results.
The API requires a high level of technical understanding, so this tool creates a simple public interface, with the ability to export data into spreadsheets.
""")

def sample_analyze_entities(text_content, your_query=""):
    # Parse the JSON string to a dictionary
    service_account_info = json.loads(st.secrets["google_nlp"])

    # Create credentials
    credentials = service_account.Credentials.from_service_account_info(
        service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"]
    )

    # Initialize the LanguageServiceClient with the credentials
    client = language_v1.LanguageServiceClient(credentials=credentials)

    # NLP analysis
    type_ = language_v1.Document.Type.PLAIN_TEXT
    language = "en"
    document = {"content": text_content, "type_": type_, "language": language}
    encoding_type = language_v1.EncodingType.UTF8

    response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type})

    # Create an empty list to hold the results
    entities_list = []

    for entity in response.entities:
        # Create a dictionary to hold individual entity details
        entity_details = {
            "Name": entity.name,
            "Type": language_v1.Entity.Type(entity.type_).name,
            "Salience Score": entity.salience,
            "Metadata": [],
            "Mentions": []
        }

        for metadata_name, metadata_value in entity.metadata.items():
            entity_details["Metadata"].append({metadata_name: metadata_value})

        for mention in entity.mentions:
            entity_details["Mentions"].append({
                "Text": mention.text.content,
                "Type": language_v1.EntityMention.Type(mention.type_).name
            })

        # Append the dictionary to the list
        entities_list.append(entity_details)

    # Streamlit UI
    if your_query:
        st.write(f"### We found {len(entities_list)} results for your query of **{your_query}**")
    else:
        st.write("### We found results for your query")

    st.write("----")

    for i, entity in enumerate(entities_list):
        st.write(f"Relevance Score: {entity.get('Salience Score', 'N/A')} \t {i+1} of {len(entities_list)}")
        
        # Display all key-value pairs in the entity dictionary
        for key, value in entity.items():
            if value:
                st.write(f"**{key}:**")
                st.json(value)
        
        st.write("----")

    st.write(f"### Language of the text: {response.language}")

# User input for text analysis
user_input = st.text_area("Enter text to analyze")
your_query = st.text_input("Enter your query (optional)")

if st.button("Analyze"):
    sample_analyze_entities(user_input, your_query)