blazingbunny's picture
Update app.py
170f624
raw
history blame
2.27 kB
import json
import streamlit as st
from google.oauth2 import service_account
from google.cloud import language_v1
# Sidebar content
st.sidebar.title("About This Tool")
st.sidebar.markdown("This tool leverages Google's NLP technology for entity analysis.")
st.sidebar.markdown("### Step-by-Step Guide")
st.sidebar.markdown("""
1. **Open the Tool**: Navigate to the URL where the tool is hosted.
2. **User Input**: Enter the text you want to analyze.
3. **Analyze**: Click the 'Analyze' button.
4. **View Results**: See the identified entities and their details.
""")
# Header and intro
st.title("Google Cloud NLP Entity Analyzer")
st.write("This tool analyzes text to identify entities such as people, locations, organizations, and events.")
def sample_analyze_entities(text_content):
# Assuming service_account_info is set in your Streamlit secrets
service_account_info = json.loads(st.secrets["google_nlp"])
credentials = service_account.Credentials.from_service_account_info(
service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"]
)
client = language_v1.LanguageServiceClient(credentials=credentials)
document = {"content": text_content, "type_": language_v1.Document.Type.PLAIN_TEXT, "language": "en"}
encoding_type = language_v1.EncodingType.UTF8
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type})
st.write(f"### We found {len(response.entities)} entities")
st.write("---")
for i, entity in enumerate(response.entities):
st.write(f"Entity {i+1} of {len(response.entities)}")
st.write(f"Name: {entity.name}")
st.write(f"Type: {language_v1.Entity.Type(entity.type_).name}")
st.write(f"Salience Score: {entity.salience}")
if entity.metadata:
st.write("Metadata:")
st.write(entity.metadata)
if entity.mentions:
st.write("Mentions:")
st.write(', '.join([mention.text.content for mention in entity.mentions]))
st.write("---")
# User input for text analysis
user_input = st.text_area("Enter text to analyze", max_chars=2500)
if st.button("Analyze"):
if user_input:
sample_analyze_entities(user_input)