File size: 2,271 Bytes
564ce0c 569a26f 564ce0c c077e58 170f624 c077e58 170f624 c077e58 170f624 e054f20 170f624 c077e58 170f624 c077e58 170f624 c077e58 170f624 bc4e0d2 170f624 d57d7e1 170f624 c077e58 170f624 d57d7e1 170f624 f66f708 c2b8ffb 170f624 569a26f c2b8ffb 170f624 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import json
import streamlit as st
from google.oauth2 import service_account
from google.cloud import language_v1
# Sidebar content
st.sidebar.title("About This Tool")
st.sidebar.markdown("This tool leverages Google's NLP technology for entity analysis.")
st.sidebar.markdown("### Step-by-Step Guide")
st.sidebar.markdown("""
1. **Open the Tool**: Navigate to the URL where the tool is hosted.
2. **User Input**: Enter the text you want to analyze.
3. **Analyze**: Click the 'Analyze' button.
4. **View Results**: See the identified entities and their details.
""")
# Header and intro
st.title("Google Cloud NLP Entity Analyzer")
st.write("This tool analyzes text to identify entities such as people, locations, organizations, and events.")
def sample_analyze_entities(text_content):
# Assuming service_account_info is set in your Streamlit secrets
service_account_info = json.loads(st.secrets["google_nlp"])
credentials = service_account.Credentials.from_service_account_info(
service_account_info, scopes=["https://www.googleapis.com/auth/cloud-platform"]
)
client = language_v1.LanguageServiceClient(credentials=credentials)
document = {"content": text_content, "type_": language_v1.Document.Type.PLAIN_TEXT, "language": "en"}
encoding_type = language_v1.EncodingType.UTF8
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type})
st.write(f"### We found {len(response.entities)} entities")
st.write("---")
for i, entity in enumerate(response.entities):
st.write(f"Entity {i+1} of {len(response.entities)}")
st.write(f"Name: {entity.name}")
st.write(f"Type: {language_v1.Entity.Type(entity.type_).name}")
st.write(f"Salience Score: {entity.salience}")
if entity.metadata:
st.write("Metadata:")
st.write(entity.metadata)
if entity.mentions:
st.write("Mentions:")
st.write(', '.join([mention.text.content for mention in entity.mentions]))
st.write("---")
# User input for text analysis
user_input = st.text_area("Enter text to analyze", max_chars=2500)
if st.button("Analyze"):
if user_input:
sample_analyze_entities(user_input)
|