blazingbunny's picture
Update app.py
dc5c795
raw
history blame
2.6 kB
import json
import streamlit as st
from google.oauth2 import service_account
from google.cloud import language_v1
import requests
# Function for querying Google Knowledge Graph API
def query_google_knowledge_graph(api_key, entity_name):
query = entity_name
service_url = "https://kgsearch.googleapis.com/v1/entities:search"
params = {
'query': query,
'limit': 1,
'indent': True,
'key': api_key,
}
response = requests.get(service_url, params=params)
return response.json()
# Header and intro
st.title("Google Cloud NLP Entity Analyzer")
st.write("## Introduction to the Knowledge Graph API")
st.write("---")
# ... (your intro text here)
def sample_analyze_entities(text_content, your_query=""):
api_key = json.loads(st.secrets["google_nlp"]) # The key is the same for both APIs
credentials = service_account.Credentials.from_service_account_info(
api_key, scopes=["https://www.googleapis.com/auth/cloud-platform"]
)
client = language_v1.LanguageServiceClient(credentials=credentials)
type_ = language_v1.Document.Type.PLAIN_TEXT
language = "en"
document = {"content": text_content, "type_": type_, "language": language}
encoding_type = language_v1.EncodingType.UTF8
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type})
# ... (rest of your NLP code)
entities_list = []
for entity in response.entities:
entity_details = {
"Name": entity.name,
"Type": language_v1.Entity.Type(entity.type_).name,
"Salience Score": entity.salience,
"Metadata": entity.metadata,
"Mentions": [mention.text.content for mention in entity.mentions]
}
entities_list.append(entity_details)
if your_query:
st.write(f"### We found {len(entities_list)} results for your query of **{your_query}**")
else:
st.write("### We found results for your query")
st.write("----")
for i, entity in enumerate(entities_list):
# ... (your existing entity display code)
# Query Google Knowledge Graph API for each entity
kg_info = query_google_knowledge_graph(api_key, entity['Name'])
st.write("### Google Knowledge Graph Information")
st.json(kg_info) # Display the JSON response
st.write("----")
# User input for text analysis
user_input = st.text_area("Enter text to analyze")
your_query = st.text_input("Enter your query (optional)")
if st.button("Analyze"):
sample_analyze_entities(user_input, your_query)