Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ import json
|
|
2 |
import streamlit as st
|
3 |
from google.oauth2 import service_account
|
4 |
from google.cloud import language_v1
|
|
|
|
|
5 |
import pandas as pd
|
6 |
|
7 |
# Function to query Google's Knowledge Graph API
|
@@ -12,9 +14,14 @@ def query_knowledge_graph(entity_id):
|
|
12 |
except Exception as e:
|
13 |
st.write(f"An error occurred: {e}")
|
14 |
|
15 |
-
# Function to
|
16 |
-
def
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Function to serialize entity metadata
|
20 |
def serialize_entity_metadata(metadata):
|
@@ -73,14 +80,22 @@ def sample_analyze_entities(text_content):
|
|
73 |
|
74 |
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type})
|
75 |
|
76 |
-
#
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
st.write(f"Name: {entity.name}")
|
85 |
st.write(f"Type: {language_v1.Entity.Type(entity.type_).name}")
|
86 |
st.write(f"Salience Score: {entity.salience}")
|
@@ -89,7 +104,7 @@ def sample_analyze_entities(text_content):
|
|
89 |
st.write("Metadata:")
|
90 |
st.write(entity.metadata)
|
91 |
|
92 |
-
if 'mid' in entity.metadata:
|
93 |
entity_id = entity.metadata['mid']
|
94 |
query_knowledge_graph(entity_id)
|
95 |
|
@@ -103,7 +118,7 @@ def sample_analyze_entities(text_content):
|
|
103 |
st.write("---")
|
104 |
|
105 |
# Add the export functionality
|
106 |
-
export_entities(
|
107 |
|
108 |
# User input for text analysis
|
109 |
user_input = st.text_area("Enter text to analyze")
|
|
|
2 |
import streamlit as st
|
3 |
from google.oauth2 import service_account
|
4 |
from google.cloud import language_v1
|
5 |
+
import urllib.parse
|
6 |
+
import urllib.request
|
7 |
import pandas as pd
|
8 |
|
9 |
# Function to query Google's Knowledge Graph API
|
|
|
14 |
except Exception as e:
|
15 |
st.write(f"An error occurred: {e}")
|
16 |
|
17 |
+
# Function to count entities with 'mid' that contains '/g/' or '/m/' in their metadata
|
18 |
+
def count_entities(entities):
|
19 |
+
count = 0
|
20 |
+
for entity in entities:
|
21 |
+
metadata = entity.metadata
|
22 |
+
if 'mid' in metadata and ('/g/' in metadata['mid'] or '/m/' in metadata['mid']):
|
23 |
+
count += 1
|
24 |
+
return count
|
25 |
|
26 |
# Function to serialize entity metadata
|
27 |
def serialize_entity_metadata(metadata):
|
|
|
80 |
|
81 |
response = client.analyze_entities(request={"document": document, "encoding_type": encoding_type})
|
82 |
|
83 |
+
# Count the entities with 'mid' and either '/g/' or '/m/' in their metadata
|
84 |
+
entity_count = count_entities(response.entities)
|
85 |
+
|
86 |
+
if entity_count == 0:
|
87 |
+
st.markdown(f"# We found {len(response.entities)} entities - but found no Google Entities")
|
88 |
+
st.write("---")
|
89 |
+
elif entity_count == 1:
|
90 |
+
st.markdown(f"# We found {len(response.entities)} entities - and found 1 Google Entity")
|
91 |
+
st.write("---")
|
92 |
+
else:
|
93 |
+
st.markdown(f"# We found {len(response.entities)} entities - and found {entity_count} Google Entities")
|
94 |
+
st.write("---")
|
95 |
+
|
96 |
+
|
97 |
+
for i, entity in enumerate(response.entities):
|
98 |
+
st.write(f"Entity {i+1} of {len(response.entities)}")
|
99 |
st.write(f"Name: {entity.name}")
|
100 |
st.write(f"Type: {language_v1.Entity.Type(entity.type_).name}")
|
101 |
st.write(f"Salience Score: {entity.salience}")
|
|
|
104 |
st.write("Metadata:")
|
105 |
st.write(entity.metadata)
|
106 |
|
107 |
+
if 'mid' in entity.metadata and ('/g/' in entity.metadata['mid'] or '/m/' in entity.metadata['mid']):
|
108 |
entity_id = entity.metadata['mid']
|
109 |
query_knowledge_graph(entity_id)
|
110 |
|
|
|
118 |
st.write("---")
|
119 |
|
120 |
# Add the export functionality
|
121 |
+
export_entities(response.entities)
|
122 |
|
123 |
# User input for text analysis
|
124 |
user_input = st.text_area("Enter text to analyze")
|