File size: 5,305 Bytes
c35600d
 
 
 
 
 
8b1f0bb
 
0445c20
1716087
8b1f0bb
24d20df
 
 
 
 
 
 
 
 
8b1f0bb
 
ff9ce37
8b1f0bb
 
 
 
 
 
 
 
c35600d
 
 
8b1f0bb
c35600d
8b1f0bb
 
 
 
c35600d
8b1f0bb
 
 
 
 
 
 
 
 
 
 
 
c35600d
 
24d20df
8b1f0bb
c35600d
 
 
 
 
8b1f0bb
 
c35600d
 
 
 
8b1f0bb
c35600d
 
8b1f0bb
c35600d
 
 
 
 
 
 
 
 
8b1f0bb
c35600d
 
 
 
 
8b1f0bb
 
c35600d
 
 
 
 
 
 
8b1f0bb
c35600d
8b1f0bb
c35600d
 
 
7d26b62
057ae6b
0445c20
8b1f0bb
 
 
59a0a73
0eb2ab2
0445c20
8f479cf
1878f5a
8b1f0bb
4f346c1
8b1f0bb
 
c35600d
0445c20
c35600d
 
 
0445c20
 
c35600d
30784d9
24d20df
 
c35600d
 
8b1f0bb
0445c20
45afa26
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
import os 
import json 
import requests

#Streaming endpoint 
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"

#Testing with my Open AI Key 
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") 

MODELS = [
    'gpt-4o',
    'gpt-4o-mini',
    'gpt-4-turbo',
    'gpt-4',
    'gpt-3.5-turbo',
]

def predict(model_name, inputs, top_p, temperature, openai_api_key, chat_counter, chatbot=[], history=[]):  #repetition_penalty, top_k

    payload = {
    "model": "gpt-3.5-turbo",
    "messages": [{"role": "user", "content": f"{inputs}"}],
    "temperature" : 1.0,
    "top_p":1.0,
    "n" : 1,
    "stream": True,
    "presence_penalty":0,
    "frequency_penalty":0,
    }

    headers = {
    "Content-Type": "application/json",
    "Authorization": f"Bearer {openai_api_key}"
    }

    print(f"chat_counter - {chat_counter}")
    if chat_counter != 0 :
        messages=[]
        for data in chatbot:
          temp1 = {}
          temp1["role"] = "user" 
          temp1["content"] = data[0] 
          temp2 = {}
          temp2["role"] = "assistant" 
          temp2["content"] = data[1]
          messages.append(temp1)
          messages.append(temp2)
        temp3 = {}
        temp3["role"] = "user" 
        temp3["content"] = inputs
        messages.append(temp3)
        #messages
        payload = {
        "model": model_name,
        "messages": messages, #[{"role": "user", "content": f"{inputs}"}],
        "temperature" : temperature, #1.0,
        "top_p": top_p, #1.0,
        "n" : 1,
        "stream": True,
        "presence_penalty":0,
        "frequency_penalty":0,
        }

    chat_counter+=1

    history.append(inputs)
    print(f"payload is - {payload}")
    # make a POST request to the API endpoint using the requests.post method, passing in stream=True
    response = requests.post(API_URL, headers=headers, json=payload, stream=True)
    #response = requests.post(API_URL, headers=headers, json=payload, stream=True)
    token_counter = 0 
    partial_words = "" 

    counter=0
    for chunk in response.iter_lines():
        #Skipping first chunk
        if counter == 0:
          counter+=1
          continue
        #counter+=1
        # check whether each line is non-empty
        if chunk.decode() :
          chunk = chunk.decode()
          # decode each line as response data is in bytes
          if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
              #if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
              #  break
              partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
              if token_counter == 0:
                history.append(" " + partial_words)
              else:
                history[-1] = partial_words
              chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ]  # convert to tuples of list
              token_counter+=1
              yield chat, history, chat_counter  # resembles {chatbot: chat, state: history}  
                   

def reset_textbox():
    return gr.update(value='')

title = """<h1 align="center">Private ChatGPT</h1>"""
description = """Chat with OpenAI models using their official API. OpenAI <a href="https://platform.openai.com/docs/concepts">promises</a> not to train on input or output of API calls.
"""
                
with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
                #chatbot {height: 520px; overflow: auto;}""") as demo:
    gr.HTML(title)
    gr.HTML(description)
    with gr.Column(elem_id = "col_container"):
        openai_api_key = gr.Textbox(type='password', label="OpenAI API key (this space does not store it)", value=OPENAI_API_KEY)
        model_name = gr.Dropdown(label='model', choices=MODELS, value=MODELS[0], allow_custom_value=True)
        chatbot = gr.Chatbot(elem_id='chatbot') #c
        inputs = gr.Textbox(placeholder= "Type here!", label= "Type an input and press Enter") #t
        state = gr.State([]) #s
        b1 = gr.Button()
    
        #inputs, top_p, temperature, top_k, repetition_penalty
        with gr.Accordion("Parameters", open=False):
            top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
            temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
            #top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
            #repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
            chat_counter = gr.Number(value=0, visible=False, precision=0)
    
    inputs.submit( predict, [model_name, inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
    b1.click( predict, [model_name, inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
    b1.click(reset_textbox, [], [inputs])
    inputs.submit(reset_textbox, [], [inputs])
                    
    #gr.Markdown(description)
    demo.queue().launch(debug=True)