File size: 5,305 Bytes
c35600d 8b1f0bb 0445c20 1716087 8b1f0bb 24d20df 8b1f0bb ff9ce37 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 24d20df 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 8b1f0bb c35600d 7d26b62 057ae6b 0445c20 8b1f0bb 59a0a73 0eb2ab2 0445c20 8f479cf 1878f5a 8b1f0bb 4f346c1 8b1f0bb c35600d 0445c20 c35600d 0445c20 c35600d 30784d9 24d20df c35600d 8b1f0bb 0445c20 45afa26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import gradio as gr
import os
import json
import requests
#Streaming endpoint
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
#Testing with my Open AI Key
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
MODELS = [
'gpt-4o',
'gpt-4o-mini',
'gpt-4-turbo',
'gpt-4',
'gpt-3.5-turbo',
]
def predict(model_name, inputs, top_p, temperature, openai_api_key, chat_counter, chatbot=[], history=[]): #repetition_penalty, top_k
payload = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": f"{inputs}"}],
"temperature" : 1.0,
"top_p":1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
print(f"chat_counter - {chat_counter}")
if chat_counter != 0 :
messages=[]
for data in chatbot:
temp1 = {}
temp1["role"] = "user"
temp1["content"] = data[0]
temp2 = {}
temp2["role"] = "assistant"
temp2["content"] = data[1]
messages.append(temp1)
messages.append(temp2)
temp3 = {}
temp3["role"] = "user"
temp3["content"] = inputs
messages.append(temp3)
#messages
payload = {
"model": model_name,
"messages": messages, #[{"role": "user", "content": f"{inputs}"}],
"temperature" : temperature, #1.0,
"top_p": top_p, #1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
chat_counter+=1
history.append(inputs)
print(f"payload is - {payload}")
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
#response = requests.post(API_URL, headers=headers, json=payload, stream=True)
token_counter = 0
partial_words = ""
counter=0
for chunk in response.iter_lines():
#Skipping first chunk
if counter == 0:
counter+=1
continue
#counter+=1
# check whether each line is non-empty
if chunk.decode() :
chunk = chunk.decode()
# decode each line as response data is in bytes
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
#if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
# break
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
token_counter+=1
yield chat, history, chat_counter # resembles {chatbot: chat, state: history}
def reset_textbox():
return gr.update(value='')
title = """<h1 align="center">Private ChatGPT</h1>"""
description = """Chat with OpenAI models using their official API. OpenAI <a href="https://platform.openai.com/docs/concepts">promises</a> not to train on input or output of API calls.
"""
with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
#chatbot {height: 520px; overflow: auto;}""") as demo:
gr.HTML(title)
gr.HTML(description)
with gr.Column(elem_id = "col_container"):
openai_api_key = gr.Textbox(type='password', label="OpenAI API key (this space does not store it)", value=OPENAI_API_KEY)
model_name = gr.Dropdown(label='model', choices=MODELS, value=MODELS[0], allow_custom_value=True)
chatbot = gr.Chatbot(elem_id='chatbot') #c
inputs = gr.Textbox(placeholder= "Type here!", label= "Type an input and press Enter") #t
state = gr.State([]) #s
b1 = gr.Button()
#inputs, top_p, temperature, top_k, repetition_penalty
with gr.Accordion("Parameters", open=False):
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
#top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
#repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
chat_counter = gr.Number(value=0, visible=False, precision=0)
inputs.submit( predict, [model_name, inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
b1.click( predict, [model_name, inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter],)
b1.click(reset_textbox, [], [inputs])
inputs.submit(reset_textbox, [], [inputs])
#gr.Markdown(description)
demo.queue().launch(debug=True)
|