ca-30x30 / app /utils.py
cassiebuhler's picture
fixed mislabeled axis in the bar charts
6937225
import streamlit as st
import streamlit.components.v1 as components
import pandas as pd
import leafmap.maplibregl as leafmap
import altair as alt
import ibis
from ibis import _
import ibis.selectors as s
import os
from shapely import wkb
from typing import Optional
from functools import reduce
from itertools import chain
from variables import *
######################## UI FUNCTIONS
def get_buttons(style_options, style_choice, default_boxes=None):
"""
Creates Streamlit checkboxes based on style options and returns the selected filters.
"""
column = style_options[style_choice]['property']
opts = [style[0] for style in style_options[style_choice]['stops']]
default_boxes = default_boxes or {}
buttons = {}
for name in opts:
key = column + str(name)
buttons[name] = st.checkbox(f"{name}", value=st.session_state[key], key=key, on_change = sync_checkboxes, args = (key,))
filter_choice = [key for key, value in buttons.items() if value]
return {column: filter_choice}
def sync_checkboxes(source):
"""
Synchronizes checkbox selections in Streamlit based on 30x30 status and GAP codes.
"""
# gap 1 and gap 2 on -> 30x30-conserved on
if source in ["gap_code1", "gap_code2"]:
st.session_state['status30x30-conserved'] = st.session_state.gap_code1 and st.session_state.gap_code2
# 30x30-conserved on -> gap 1 and gap 2 on
elif source == "status30x30-conserved":
st.session_state.gap_code1 = st.session_state['status30x30-conserved']
st.session_state.gap_code2 = st.session_state['status30x30-conserved']
# other-conserved on <-> gap 3 on
elif source == "gap_code3":
st.session_state["statusother-conserved"] = st.session_state.gap_code3
elif source == "statusother-conserved":
if "gap_code3" in st.session_state and st.session_state["statusother-conserved"] != st.session_state.gap_code3:
st.session_state.gap_code3 = st.session_state["statusother-conserved"]
# unknown on <-> gap 4 on
elif source == "gap_code4":
st.session_state.statusunknown = st.session_state.gap_code4
elif source == "statusunknown":
if "gap_code4" in st.session_state and st.session_state.statusunknown != st.session_state.gap_code4:
st.session_state.gap_code4 = st.session_state.statusunknown
# non-conserved on <-> gap 0
elif source == "gap_code0":
st.session_state['statusnon-conserved'] = st.session_state.gap_code0
elif source == "statusnon-conserved":
if "gap_code0" in st.session_state and st.session_state['statusnon-conserved'] != st.session_state.gap_code0:
st.session_state.gap_code0 = st.session_state['statusnon-conserved']
def color_table(select_colors, color_choice, column):
"""
Converts selected color mapping into a DataFrame.
"""
return ibis.memtable(select_colors[color_choice], columns=[column, "color"]).to_pandas()
def get_color_vals(style_options, style_choice):
"""
Extracts available color values for a selected style option.
"""
column = style_options[style_choice]['property']
return {column: [style[0] for style in style_options[style_choice]['stops']]}
######################## SUMMARY & DATA FUNCTIONS
def get_summary(ca, combined_filter, column, main_group, colors = None):
"""
Computes summary statistics for the filtered dataset.
"""
df = ca.filter(combined_filter)
#total acres for each group
group_totals = df.group_by(main_group).aggregate(total_acres=_.acres.sum())
df = (df.group_by(*column)
.aggregate(percent_CA=(_.acres.sum() / ca_area_acres),
acres=_.acres.sum(),
mean_richness=(_.richness * _.acres).sum() / _.acres.sum(),
mean_rsr=(_.rsr * _.acres).sum() / _.acres.sum(),
mean_irrecoverable_carbon=(_.irrecoverable_carbon * _.acres).sum() / _.acres.sum(),
mean_manageable_carbon=(_.manageable_carbon * _.acres).sum() / _.acres.sum(),
mean_fire=(_.fire * _.acres).sum()/_.acres.sum(),
mean_rxburn=(_.rxburn * _.acres).sum()/_.acres.sum(),
mean_disadvantaged=(_.disadvantaged_communities * _.acres).sum() / _.acres.sum(),
mean_svi=(_.svi * _.acres).sum() / _.acres.sum())
.mutate(percent_CA=_.percent_CA.round(5), acres=_.acres.round(0)))
df = df.inner_join(group_totals, main_group).mutate(percent_group=( _.acres / _.total_acres).round(3))
if colors is not None and not colors.empty:
df = df.inner_join(colors, column[-1])
return df.cast({col: "string" for col in column}).execute()
def get_summary_table(ca, column, select_colors, color_choice, filter_cols, filter_vals, colorby_vals):
"""
Generates summary tables for visualization and reporting.
"""
colors = color_table(select_colors, color_choice, column)
#if a filter is selected, add to list of filters
filters = [getattr(_, col).isin(vals) for col, vals in zip(filter_cols, filter_vals) if vals]
#show color_by column in table by adding it as a filter (if it's not already a filter)
if column not in filter_cols:
filter_cols.append(column)
filters.append(getattr(_, column).isin(colorby_vals[column]))
#combining all the filters into ibis filter expression
combined_filter = reduce(lambda x, y: x & y, filters)
only_conserved = combined_filter & (_.status.isin(['30x30-conserved']))
# df used for percentage, excludes non-conserved.
df_percent = get_summary(ca, only_conserved, [column], column, colors)
#df used for printed table
df_tab = get_summary(ca, combined_filter, filter_cols, column, colors=None)
if "non-conserved" in chain.from_iterable(filter_vals):
combined_filter = combined_filter | (_.status.isin(['non-conserved']))
# df used for charts
df = get_summary(ca, combined_filter, [column], column, colors)
# df for stacked 30x30 status bar chart
df_bar_30x30 = None if column in ["status", "gap_code"] else get_summary(ca, combined_filter, [column, 'status'], column, color_table(select_colors, "30x30 Status", 'status'))
return df, df_tab, df_percent, df_bar_30x30
def get_summary_table_sql(ca, column, colors, ids):
"""
Generates a summary table using specific IDs as filters.
"""
combined_filter = _.id.isin(ids)
return get_summary(ca, combined_filter, [column], column, colors)
######################## MAP STYLING FUNCTIONS
def get_pmtiles_style(paint, alpha, filter_cols, filter_vals):
"""
Generates a MapLibre GL style for PMTiles with specified filters.
"""
filters = [["match", ["get", col], val, True, False] for col, val in zip(filter_cols, filter_vals)]
combined_filters = ["all", *filters]
if "non-conserved" in chain.from_iterable(filter_vals):
combined_filters = ["any", combined_filters, ["match", ["get", "status"], ["non-conserved"], True, False]]
return {
"version": 8,
"sources": {"ca": {"type": "vector", "url": f"pmtiles://{ca_pmtiles}"}},
"layers": [
{
"id": "ca30x30",
"source": "ca",
"source-layer": "ca30x30",
"type": "fill",
"filter": combined_filters,
"paint": {"fill-color": paint, "fill-opacity": alpha},
}
],
}
def get_pmtiles_style_llm(paint, ids):
"""
Generates a MapLibre GL style for PMTiles using specific IDs as filters.
"""
return {
"version": 8,
"sources": {"ca": {"type": "vector", "url": f"pmtiles://{ca_pmtiles}"}},
"layers": [
{
"id": "ca30x30",
"source": "ca",
"source-layer": "ca30x30",
"type": "fill",
"filter": ["in", ["get", "id"], ["literal", ids]],
# "filter": ["all", ["match", ["get", "id"], ids, True, False]],
"paint": {"fill-color": paint, "fill-opacity": 1},
}
],
}
def get_legend(style_options, color_choice):
"""
Generates a legend dictionary with color mapping and formatting adjustments.
"""
legend = {cat: color for cat, color in style_options[color_choice]['stops']}
position, fontsize, bg_color = 'bottom-left', 15, 'white'
# shorten legend for ecoregions
if color_choice == "Ecoregion":
legend = {key.replace("Northern California", "NorCal"): value for key, value in legend.items()}
legend = {key.replace("Southern California", "SoCal"): value for key, value in legend.items()}
legend = {key.replace("Southeastern", "SE."): value for key, value in legend.items()}
legend = {key.replace("and", "&"): value for key, value in legend.items()}
legend = {key.replace("California", "CA"): value for key, value in legend.items()}
legend = {key.replace("Northwestern", "NW."): value for key, value in legend.items()}
bg_color = 'rgba(255, 255, 255, 0.6)'
fontsize = 12
return legend, position, bg_color, fontsize
######################## CHART FUNCTIONS
def area_chart(df, column):
"""
Generates an Altair pie chart representing the percentage of protected areas.
"""
base = alt.Chart(df).encode(alt.Theta("percent_CA:Q").stack(True))
pie = (
base.mark_arc(innerRadius=40, outerRadius=100, stroke="black", strokeWidth=0.1)
.encode(
alt.Color("color:N").scale(None).legend(None),
tooltip=[
alt.Tooltip(column, type="nominal"),
alt.Tooltip("percent_CA", type="quantitative", format=",.1%"),
alt.Tooltip("acres", type="quantitative", format=",.0f"),
]
)
)
return pie.properties(width="container", height=290)
def bar_chart(df, x, y, title):
"""Creates a simple bar chart."""
return create_bar_chart(df, x, y, title)
def stacked_bar(df, x, y, color, title, colors):
"""Creates a stacked bar chart."""
return create_bar_chart(df, x, y, title, color=color, stacked=True, colors=colors)
def get_chart_settings(x, y, stacked):
"""
Returns sorting, axis settings, and y-axis title mappings.
"""
sort_options = {
"established": "-x",
"access_type": ["Open", "Restricted", "No Public", "Unknown"],
"easement": ["True", "False"],
"manager_type": ["Federal", "Tribal", "State", "Special District", "County", "City",
"HOA", "Joint", "Non Profit", "Private", "Unknown"],
"status": ["30x30-conserved", "other-conserved", "unknown", "non-conserved"],
"ecoregion": ['SE. Great Basin', 'Mojave Desert', 'Sonoran Desert', 'Sierra Nevada',
'SoCal Mountains & Valleys', 'Mono', 'Central CA Coast', 'Klamath Mountains',
'NorCal Coast', 'NorCal Coast Ranges', 'NW. Basin & Range', 'Colorado Desert',
'Central Valley Coast Ranges', 'SoCal Coast', 'Sierra Nevada Foothills',
'Southern Cascades', 'Modoc Plateau', 'Great Valley (North)',
'NorCal Interior Coast Ranges', 'Great Valley (South)']
}
y_titles = {
"ecoregion": "Ecoregion (%)", "established": "Year (%)",
"manager_type": "Manager Type (%)", "easement": "Easement (%)",
"access_type": "Access (%)", "mean_richness": "Richness (Mean)",
"mean_rsr": "Range-Size Rarity (Mean)", "mean_irrecoverable_carbon": "Irrecoverable Carbon (Mean)",
"mean_manageable_carbon": "Manageable Carbon (Mean)", "mean_disadvantaged": "Disadvantaged (Mean)",
"mean_svi": "SVI (Mean)", "mean_fire": "Fire (Mean)", "mean_rxburn": "Rx Fire (Mean)"
}
if stacked:
y_titles = y_titles.get(x,x)
else:
y_titles = y_titles.get(y,y)
angle = 270 if x in ["manager_type", "ecoregion"] else 0
height = 250 if stacked else 400 if x == "ecoregion" else 350 if x == "manager_type" else 300
return sort_options.get(x, "x"), angle, height, y_titles
def get_label_transform(x, label=None):
"""
Returns label transformation logic for Altair expressions and manual label conversion.
"""
transformations = {
"access_type": ("replace(datum.access_type, ' Access', '')", lambda lbl: lbl.replace(" Access", "")),
"ecoregion": (
"replace(replace(replace(replace(replace("
"replace(datum.ecoregion, 'Northern California', 'NorCal'),"
"'Southern California', 'SoCal'),"
"'Southeastern', 'SE.'),"
"'Northwestern', 'NW.'),"
"'and', '&'),"
"'California', 'CA')",
lambda lbl: (lbl.replace("Northern California", "NorCal")
.replace("Southern California", "SoCal")
.replace("Southeastern", "SE.")
.replace("Northwestern", "NW.")
.replace("and", "&")
.replace("California", "CA"))
)
}
if label is not None:
return transformations.get(x, (None, lambda lbl: lbl))[1](label)
return transformations.get(x, (f"datum.{x}", None))[0]
def get_hex(df, color, order):
"""
Returns a list of hex color codes and categories sorted based on `sort_order`.
"""
return (df.drop_duplicates(subset=color, keep="first")
.set_index(color)
.reindex(order)
.dropna()
.reset_index()).T.values.tolist()
def create_bar_chart(df, x, y, title, color=None, stacked=False, colors=None):
"""
Generalized function to create a bar chart, supporting both standard and stacked bars.
"""
# helper functions
sort, angle, height, y_title = get_chart_settings(x, y, stacked)
label_transform = get_label_transform(x)
# create base chart
chart = (
alt.Chart(df)
.mark_bar(stroke="black", strokeWidth=0.1)
.transform_calculate(xlabel=label_transform)
.encode(
x=alt.X("xlabel:N", sort=sort,
axis=alt.Axis(labelAngle=angle, title=None, labelLimit=200)),
y=alt.Y(y, axis=alt.Axis(title=y_title, offset = -5)),
tooltip=[alt.Tooltip(x, type="nominal"), alt.Tooltip(y, type="quantitative")]
)
.properties(width="container", height=height)
)
if stacked:
# order stacks
order = ["30x30-conserved", "other-conserved", "unknown", "non-conserved"]
sort_order ,color_hex = get_hex(df[[color, "color"]], color, order)
df["stack_order"] = df[color].apply(lambda val: sort_order.index(val) if val in sort_order else len(sort_order))
# build chart
chart = chart.encode(
x=alt.X("xlabel:N", sort=sort, title=None, axis=alt.Axis(labels=False)),
y=alt.Y(y, axis=alt.Axis(title=y_title, offset = -5),scale = alt.Scale(domain = [0,1])),
color=alt.Color(color, sort=sort_order, scale=alt.Scale(domain=sort_order, range=color_hex)) ,
order=alt.Order("stack_order:Q", sort="ascending"),
tooltip=[
alt.Tooltip(x, type="nominal"),
alt.Tooltip(color, type="nominal"),
alt.Tooltip("percent_group", type="quantitative", format=",.1%"),
alt.Tooltip("acres", type="quantitative", format=",.0f"),
],
)
# use shorter label names (to save space)
labels_df = colors.copy()
labels_df["xlabel"] = [get_label_transform(x, str(lab)) for lab in colors[x]]
# create symbols/label below chart; dots match map colors.
symbol_layer = (
alt.Chart(labels_df)
.mark_point(filled=True, shape="circle", size=100, tooltip=False, yOffset=5)
.encode(
x=alt.X("xlabel:N", sort=sort,
axis=alt.Axis(labelAngle=angle, title=None, labelLimit=200)),
color=alt.Color("color:N", scale=None),
)
.properties(height=1, width="container")
)
# append symbols below base chart
final_chart = alt.vconcat(chart, symbol_layer, spacing=8).resolve_scale(x="shared")
else: #if not stacked, do single chart
final_chart = chart.encode(
color=alt.Color("color").scale(None)
)
# customize chart
final_chart = final_chart.properties(
title=title
).configure_legend(
symbolStrokeWidth=0.1, direction="horizontal", orient="top",
columns=2, title=None, labelOffset=2, offset=5,
symbolType="square", labelFontSize=13,
).configure_title(
fontSize=18, align="center", anchor="middle", offset = 10
)
return final_chart