Spaces:
Running
Running
File size: 16,897 Bytes
dd06071 38804a1 dd06071 56784d5 dd06071 5dc4444 38804a1 5dc4444 38804a1 593d846 56784d5 38804a1 56784d5 593d846 56784d5 593d846 56784d5 38804a1 dd06071 38804a1 d9fb7d9 38804a1 56784d5 38804a1 dd06071 38804a1 dd06071 38804a1 dd06071 38804a1 dd06071 38804a1 593d846 38804a1 593d846 38804a1 dd06071 38804a1 dd06071 38804a1 dd06071 e1041f5 dd06071 38804a1 dd06071 38804a1 dd06071 38804a1 dd06071 38804a1 dd06071 e1041f5 dd06071 38804a1 dd06071 38804a1 dd06071 593d846 38804a1 d9fb7d9 38804a1 d9fb7d9 38804a1 d9fb7d9 38804a1 d9fb7d9 38804a1 d9fb7d9 38804a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import streamlit as st
import streamlit.components.v1 as components
import pandas as pd
import leafmap.maplibregl as leafmap
import altair as alt
import ibis
from ibis import _
import ibis.selectors as s
import os
from shapely import wkb
from typing import Optional
from functools import reduce
from itertools import chain
from variables import *
######################## UI FUNCTIONS
def get_buttons(style_options, style_choice, default_boxes=None):
"""
Creates Streamlit checkboxes based on style options and returns the selected filters.
"""
column = style_options[style_choice]['property']
opts = [style[0] for style in style_options[style_choice]['stops']]
default_boxes = default_boxes or {}
buttons = {}
for name in opts:
key = column + str(name)
buttons[name] = st.checkbox(f"{name}", value=st.session_state[key], key=key, on_change = sync_checkboxes, args = (key,))
filter_choice = [key for key, value in buttons.items() if value]
return {column: filter_choice}
def sync_checkboxes(source):
"""
Synchronizes checkbox selections in Streamlit based on 30x30 status and GAP codes.
"""
# gap 1 and gap 2 on -> 30x30-conserved on
if source in ["gap_code1", "gap_code2"]:
st.session_state['status30x30-conserved'] = st.session_state.gap_code1 and st.session_state.gap_code2
# 30x30-conserved on -> gap 1 and gap 2 on
elif source == "status30x30-conserved":
st.session_state.gap_code1 = st.session_state['status30x30-conserved']
st.session_state.gap_code2 = st.session_state['status30x30-conserved']
# other-conserved on <-> gap 3 on
elif source == "gap_code3":
st.session_state["statusother-conserved"] = st.session_state.gap_code3
elif source == "statusother-conserved":
if "gap_code3" in st.session_state and st.session_state["statusother-conserved"] != st.session_state.gap_code3:
st.session_state.gap_code3 = st.session_state["statusother-conserved"]
# unknown on <-> gap 4 on
elif source == "gap_code4":
st.session_state.statusunknown = st.session_state.gap_code4
elif source == "statusunknown":
if "gap_code4" in st.session_state and st.session_state.statusunknown != st.session_state.gap_code4:
st.session_state.gap_code4 = st.session_state.statusunknown
# non-conserved on <-> gap 0
elif source == "gap_code0":
st.session_state['statusnon-conserved'] = st.session_state.gap_code0
elif source == "statusnon-conserved":
if "gap_code0" in st.session_state and st.session_state['statusnon-conserved'] != st.session_state.gap_code0:
st.session_state.gap_code0 = st.session_state['statusnon-conserved']
def color_table(select_colors, color_choice, column):
"""
Converts selected color mapping into a DataFrame.
"""
return ibis.memtable(select_colors[color_choice], columns=[column, "color"]).to_pandas()
def get_color_vals(style_options, style_choice):
"""
Extracts available color values for a selected style option.
"""
column = style_options[style_choice]['property']
return {column: [style[0] for style in style_options[style_choice]['stops']]}
######################## SUMMARY & DATA FUNCTIONS
def get_summary(ca, combined_filter, column, main_group, colors = None):
"""
Computes summary statistics for the filtered dataset.
"""
df = ca.filter(combined_filter)
#total acres for each group
group_totals = df.group_by(main_group).aggregate(total_acres=_.acres.sum())
df = (df.group_by(*column)
.aggregate(percent_CA=(_.acres.sum() / ca_area_acres),
acres=_.acres.sum(),
mean_richness=(_.richness * _.acres).sum() / _.acres.sum(),
mean_rsr=(_.rsr * _.acres).sum() / _.acres.sum(),
mean_irrecoverable_carbon=(_.irrecoverable_carbon * _.acres).sum() / _.acres.sum(),
mean_manageable_carbon=(_.manageable_carbon * _.acres).sum() / _.acres.sum(),
mean_fire=(_.fire * _.acres).sum()/_.acres.sum(),
mean_rxburn=(_.rxburn * _.acres).sum()/_.acres.sum(),
mean_disadvantaged=(_.disadvantaged_communities * _.acres).sum() / _.acres.sum(),
mean_svi=(_.svi * _.acres).sum() / _.acres.sum())
.mutate(percent_CA=_.percent_CA.round(5), acres=_.acres.round(0)))
df = df.inner_join(group_totals, main_group).mutate(percent_group=( _.acres / _.total_acres).round(3))
if colors is not None and not colors.empty:
df = df.inner_join(colors, column[-1])
return df.cast({col: "string" for col in column}).execute()
def get_summary_table(ca, column, select_colors, color_choice, filter_cols, filter_vals, colorby_vals):
"""
Generates summary tables for visualization and reporting.
"""
colors = color_table(select_colors, color_choice, column)
#if a filter is selected, add to list of filters
filters = [getattr(_, col).isin(vals) for col, vals in zip(filter_cols, filter_vals) if vals]
#show color_by column in table by adding it as a filter (if it's not already a filter)
if column not in filter_cols:
filter_cols.append(column)
filters.append(getattr(_, column).isin(colorby_vals[column]))
#combining all the filters into ibis filter expression
combined_filter = reduce(lambda x, y: x & y, filters)
only_conserved = combined_filter & (_.status.isin(['30x30-conserved']))
# df used for percentage, excludes non-conserved.
df_percent = get_summary(ca, only_conserved, [column], column, colors)
#df used for printed table
df_tab = get_summary(ca, combined_filter, filter_cols, column, colors=None)
if "non-conserved" in chain.from_iterable(filter_vals):
combined_filter = combined_filter | (_.status.isin(['non-conserved']))
# df used for charts
df = get_summary(ca, combined_filter, [column], column, colors)
# df for stacked 30x30 status bar chart
df_bar_30x30 = None if column in ["status", "gap_code"] else get_summary(ca, combined_filter, [column, 'status'], column, color_table(select_colors, "30x30 Status", 'status'))
return df, df_tab, df_percent, df_bar_30x30
def get_summary_table_sql(ca, column, colors, ids):
"""
Generates a summary table using specific IDs as filters.
"""
combined_filter = _.id.isin(ids)
return get_summary(ca, combined_filter, [column], column, colors)
######################## MAP STYLING FUNCTIONS
def get_pmtiles_style(paint, alpha, filter_cols, filter_vals):
"""
Generates a MapLibre GL style for PMTiles with specified filters.
"""
filters = [["match", ["get", col], val, True, False] for col, val in zip(filter_cols, filter_vals)]
combined_filters = ["all", *filters]
if "non-conserved" in chain.from_iterable(filter_vals):
combined_filters = ["any", combined_filters, ["match", ["get", "status"], ["non-conserved"], True, False]]
return {
"version": 8,
"sources": {"ca": {"type": "vector", "url": f"pmtiles://{ca_pmtiles}"}},
"layers": [
{
"id": "ca30x30",
"source": "ca",
"source-layer": "ca30x30",
"type": "fill",
"filter": combined_filters,
"paint": {"fill-color": paint, "fill-opacity": alpha},
}
],
}
def get_pmtiles_style_llm(paint, ids):
"""
Generates a MapLibre GL style for PMTiles using specific IDs as filters.
"""
return {
"version": 8,
"sources": {"ca": {"type": "vector", "url": f"pmtiles://{ca_pmtiles}"}},
"layers": [
{
"id": "ca30x30",
"source": "ca",
"source-layer": "ca30x30",
"type": "fill",
"filter": ["in", ["get", "id"], ["literal", ids]],
# "filter": ["all", ["match", ["get", "id"], ids, True, False]],
"paint": {"fill-color": paint, "fill-opacity": 1},
}
],
}
def get_legend(style_options, color_choice):
"""
Generates a legend dictionary with color mapping and formatting adjustments.
"""
legend = {cat: color for cat, color in style_options[color_choice]['stops']}
position, fontsize, bg_color = 'bottom-left', 15, 'white'
# shorten legend for ecoregions
if color_choice == "Ecoregion":
legend = {key.replace("Northern California", "NorCal"): value for key, value in legend.items()}
legend = {key.replace("Southern California", "SoCal"): value for key, value in legend.items()}
legend = {key.replace("Southeastern", "SE."): value for key, value in legend.items()}
legend = {key.replace("and", "&"): value for key, value in legend.items()}
legend = {key.replace("California", "CA"): value for key, value in legend.items()}
legend = {key.replace("Northwestern", "NW."): value for key, value in legend.items()}
bg_color = 'rgba(255, 255, 255, 0.6)'
fontsize = 12
return legend, position, bg_color, fontsize
######################## CHART FUNCTIONS
def area_chart(df, column):
"""
Generates an Altair pie chart representing the percentage of protected areas.
"""
base = alt.Chart(df).encode(alt.Theta("percent_CA:Q").stack(True))
pie = (
base.mark_arc(innerRadius=40, outerRadius=100, stroke="black", strokeWidth=0.1)
.encode(
alt.Color("color:N").scale(None).legend(None),
tooltip=[
alt.Tooltip(column, type="nominal"),
alt.Tooltip("percent_CA", type="quantitative", format=",.1%"),
alt.Tooltip("acres", type="quantitative", format=",.0f"),
]
)
)
return pie.properties(width="container", height=290)
def bar_chart(df, x, y, title):
"""Creates a simple bar chart."""
return create_bar_chart(df, x, y, title)
def stacked_bar(df, x, y, color, title, colors):
"""Creates a stacked bar chart."""
return create_bar_chart(df, x, y, title, color=color, stacked=True, colors=colors)
def get_chart_settings(x, stacked):
"""
Returns sorting, axis settings, and y-axis title mappings.
"""
sort_options = {
"established": "-x",
"access_type": ["Open", "Restricted", "No Public", "Unknown"],
"easement": ["True", "False"],
"manager_type": ["Federal", "Tribal", "State", "Special District", "County", "City",
"HOA", "Joint", "Non Profit", "Private", "Unknown"],
"status": ["30x30-conserved", "other-conserved", "unknown", "non-conserved"],
"ecoregion": ['SE. Great Basin', 'Mojave Desert', 'Sonoran Desert', 'Sierra Nevada',
'SoCal Mountains & Valleys', 'Mono', 'Central CA Coast', 'Klamath Mountains',
'NorCal Coast', 'NorCal Coast Ranges', 'NW. Basin & Range', 'Colorado Desert',
'Central Valley Coast Ranges', 'SoCal Coast', 'Sierra Nevada Foothills',
'Southern Cascades', 'Modoc Plateau', 'Great Valley (North)',
'NorCal Interior Coast Ranges', 'Great Valley (South)']
}
y_titles = {
"ecoregion": "Ecoregion (%)", "established": "Year (%)",
"manager_type": "Manager Type (%)", "easement": "Easement (%)",
"access_type": "Access (%)", "mean_richness": "Richness (Mean)",
"mean_rsr": "Range-Size Rarity (Mean)", "mean_irrecoverable_carbon": "Irrecoverable Carbon (Mean)",
"mean_manageable_carbon": "Manageable Carbon (Mean)", "mean_disadvantaged": "Disadvantaged (Mean)",
"mean_svi": "SVI (Mean)", "mean_fire": "Fire (Mean)", "mean_rxburn": "Rx Fire (Mean)"
}
angle = 270 if x in ["manager_type", "ecoregion"] else 0
height = 250 if stacked else 400 if x == "ecoregion" else 350 if x == "manager_type" else 300
return sort_options.get(x, "x"), angle, height, y_titles.get(x, x)
def get_label_transform(x, label=None):
"""
Returns label transformation logic for Altair expressions and manual label conversion.
"""
transformations = {
"access_type": ("replace(datum.access_type, ' Access', '')", lambda lbl: lbl.replace(" Access", "")),
"ecoregion": (
"replace(replace(replace(replace(replace("
"replace(datum.ecoregion, 'Northern California', 'NorCal'),"
"'Southern California', 'SoCal'),"
"'Southeastern', 'SE.'),"
"'Northwestern', 'NW.'),"
"'and', '&'),"
"'California', 'CA')",
lambda lbl: (lbl.replace("Northern California", "NorCal")
.replace("Southern California", "SoCal")
.replace("Southeastern", "SE.")
.replace("Northwestern", "NW.")
.replace("and", "&")
.replace("California", "CA"))
)
}
if label is not None:
return transformations.get(x, (None, lambda lbl: lbl))[1](label)
return transformations.get(x, (f"datum.{x}", None))[0]
def get_hex(df, color, order):
"""
Returns a list of hex color codes and categories sorted based on `sort_order`.
"""
return (df.drop_duplicates(subset=color, keep="first")
.set_index(color)
.reindex(order)
.dropna()
.reset_index()).T.values.tolist()
def create_bar_chart(df, x, y, title, color=None, stacked=False, colors=None):
"""
Generalized function to create a bar chart, supporting both standard and stacked bars.
"""
# helper functions
sort, angle, height, y_title = get_chart_settings(x,stacked)
label_transform = get_label_transform(x)
# create base chart
chart = (
alt.Chart(df)
.mark_bar(stroke="black", strokeWidth=0.1)
.transform_calculate(xlabel=label_transform)
.encode(
x=alt.X("xlabel:N", sort=sort,
axis=alt.Axis(labelAngle=angle, title=None, labelLimit=200)),
y=alt.Y(y, axis=alt.Axis(title=y_title, offset = -5)),
tooltip=[alt.Tooltip(x, type="nominal"), alt.Tooltip(y, type="quantitative")]
)
.properties(width="container", height=height)
)
if stacked:
# order stacks
order = ["30x30-conserved", "other-conserved", "unknown", "non-conserved"]
sort_order ,color_hex = get_hex(df[[color, "color"]], color, order)
df["stack_order"] = df[color].apply(lambda val: sort_order.index(val) if val in sort_order else len(sort_order))
# build chart
chart = chart.encode(
x=alt.X("xlabel:N", sort=sort, title=None, axis=alt.Axis(labels=False)),
y=alt.Y(y, axis=alt.Axis(title=y_title, offset = -5),scale = alt.Scale(domain = [0,1])),
color=alt.Color(color, sort=sort_order, scale=alt.Scale(domain=sort_order, range=color_hex)) ,
order=alt.Order("stack_order:Q", sort="ascending"),
tooltip=[
alt.Tooltip(x, type="nominal"),
alt.Tooltip(color, type="nominal"),
alt.Tooltip("percent_group", type="quantitative", format=",.1%"),
alt.Tooltip("acres", type="quantitative", format=",.0f"),
],
)
# use shorter label names (to save space)
labels_df = colors.copy()
labels_df["xlabel"] = [get_label_transform(x, str(lab)) for lab in colors[x]]
# create symbols/label below chart; dots match map colors.
symbol_layer = (
alt.Chart(labels_df)
.mark_point(filled=True, shape="circle", size=100, tooltip=False, yOffset=5)
.encode(
x=alt.X("xlabel:N", sort=sort,
axis=alt.Axis(labelAngle=angle, title=None, labelLimit=200)),
color=alt.Color("color:N", scale=None),
)
.properties(height=1, width="container")
)
# append symbols below base chart
final_chart = alt.vconcat(chart, symbol_layer, spacing=8).resolve_scale(x="shared")
else: #if not stacked, do single chart
final_chart = chart.encode(
color=alt.Color("color").scale(None)
)
# customize chart
final_chart = final_chart.properties(
title=title
).configure_legend(
symbolStrokeWidth=0.1, direction="horizontal", orient="top",
columns=2, title=None, labelOffset=2, offset=5,
symbolType="square", labelFontSize=13,
).configure_title(
fontSize=18, align="center", anchor="middle", offset = 10
)
return final_chart
|