File size: 16,320 Bytes
9a5d6f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8750848
 
 
 
 
8bd32d3
918728f
 
 
 
 
8bd32d3
918728f
 
d827042
5d54e07
8bd32d3
5d54e07
918728f
c89fcc1
9a5d6f4
8750848
 
 
 
 
8bd32d3
 
 
 
8750848
c89fcc1
8bd32d3
9a5d6f4
d827042
 
 
fb98f2d
 
8bd32d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
898bb75
8bd32d3
 
 
d827042
8bd32d3
d827042
 
 
 
 
 
 
 
 
8bd32d3
d827042
 
 
 
 
 
 
 
8bd32d3
 
 
 
 
 
 
 
 
 
 
d827042
8bd32d3
d827042
 
8bd32d3
 
 
 
d827042
 
 
f052b1c
8bd32d3
d827042
 
8bd32d3
 
 
 
 
 
 
 
 
d827042
8bd32d3
d827042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b3c092
 
fb98f2d
2b3c092
d827042
fb98f2d
2b3c092
 
fb98f2d
8bd32d3
2b3c092
d827042
 
 
 
fb98f2d
8750848
5d54e07
 
 
 
d827042
 
 
 
 
69b7b38
d827042
69b7b38
3aa2741
d827042
69b7b38
 
 
 
 
 
 
 
f052b1c
69b7b38
 
8bd32d3
69b7b38
 
 
 
 
 
 
a25711e
 
69b7b38
 
 
d827042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c44a48
 
 
d827042
 
 
 
 
8bd32d3
 
 
 
 
 
 
 
 
 
 
 
 
 
5d54e07
 
 
 
 
 
 
69b7b38
 
 
 
 
 
 
 
d827042
a25711e
 
 
d827042
69b7b38
d827042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bd32d3
d827042
8750848
8bd32d3
f052b1c
8bd32d3
 
 
 
 
 
 
 
f052b1c
 
8bd32d3
f052b1c
 
 
 
 
8bd32d3
f052b1c
 
8bd32d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8750848
8bd32d3
 
8750848
 
8bd32d3
 
 
 
8750848
8bd32d3
 
 
9a5d6f4
8750848
8bd32d3
 
 
 
 
8750848
8bd32d3
898bb75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201a16f
8750848
8bd32d3
8750848
8bd32d3
8750848
 
8bd32d3
 
 
8750848
8bd32d3
8750848
8bd32d3
201a16f
8bd32d3
201a16f
 
 
8bd32d3
 
 
 
 
201a16f
8bd32d3
 
 
 
201a16f
8bd32d3
201a16f
8bd32d3
 
e8745ad
8bd32d3
 
e8745ad
8bd32d3
e8745ad
8bd32d3
 
 
 
 
e8745ad
8bd32d3
e8745ad
8bd32d3
 
 
69b7b38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# -*- coding: utf-8 -*-
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import leafmap.foliumap as leafmap
import streamlit as st
import altair as alt
import ibis
from ibis import _
import ibis.selectors as s

# defaults, consider user palette via st.color_picker()
private_color = "#DE881E" # orange #"#850101" # red
tribal_color = "#BF40BF" # purple
mixed_color = "#005a00" # green
public_color = "#3388ff" # blue

# default color breaks, consider tool via st.slider()
low = 2
high = 3
alpha = .5
style_choice = "Manager Type"
us_lower_48_area_m2 = 7.8e+12


st.set_page_config(layout="wide", page_title="Protected Areas Explorer", page_icon=":globe:")

'''
# US Protected Area Database Explorer

'''

#pad_pmtiles = "https://data.source.coop/cboettig/pad-us-3/pad-stats.pmtiles"
#parquet = "https://data.source.coop/cboettig/pad-us-3/pad-stats.parquet"
pad_pmtiles = "https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/pad-stats.pmtiles"
parquet = "https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/pad-stats.parquet"


m = leafmap.Map(center=[35, -100], zoom=4, layers_control=True)

custom_style = '''
"blue"
'''


sample_q = '''(
ibis.read_parquet('https://minio.carlboettiger.info/public-biodiversity/pad-us-3/pad-mobi.parquet').
group_by(_.bucket).
aggregate(percent_protected =  100 * _.area.sum() / us_lower_48_area_m2,
        mean_richness = (_.richness * _.area).sum() / _.area.sum(),
        mean_rsr = (_.rsr * _.area).sum() / _.area.sum()
        ).
mutate(percent_protected = _.percent_protected.round())
)
'''

def bar_chart(df, x, y):
    chart = alt.Chart(df).mark_bar().encode(
        x=x,
        y=y,
        color=alt.Color('color').scale(None)
    ).properties(width="container", height=300)
    return chart


manager = {
            'property': 'manager_group',
            'type': 'categorical',
            'stops': [
                ['public', public_color],
                ['private', private_color],
                ['mixed', mixed_color],
                ['tribal', tribal_color]
            ]
            }
easement = {
            'property': 'category',
            'type': 'categorical',
            'stops': [
                ['Fee', public_color],
                ['Easement', private_color],
                ['Proclamation', tribal_color]
            ]
            }

access = {
    'property': 'public_access',
    'type': 'categorical',
    'stops': [
        ['Open Access', public_color],
        ['Closed', private_color],
        ['Unknown', "grey"],
        ['Restricted Access', tribal_color]
    ]
}

gap = {
        'property': 'gap_code',
        'type': 'categorical',
        'stops': [
            [1, "#26633d"],
            [2, "#879647"],
            [3, "#BBBBBB"],
            [4, "#F8F8F8"]
        ]
        }

iucn = {
            'property': 'iucn_category',
            'type': 'categorical',
            'stops': [
                ["Ia: Strict nature reserves", "#4B0082"],
                ["Ib: Wilderness areas", "#663399"],
                ["II: National park", "#7B68EE"],
                ["III: Natural monument or feature", "#9370DB"],
                ["IV: Habitat / species management", "#8A2BE2"],
                ["V: Protected landscape / seascape", "#9932CC"],
                ["VI: Protected area with sustainable use of natural resources", "#9400D3"],
                ["Other Conservation Area", "#DDA0DD"],
                ["Unassigned", "#F8F8F8"],
            ]
        }

thresholds = ['case',
              ['<', ['get', 'richness'], low],
               private_color,
              ['>=', ['get', 'richness'], high],
               mixed_color,
               public_color # default
             ]

richness = ["interpolate",
           ["linear"],
           ["get", "richness"],
           0, "#FFE6EE",
           4.8, "#850101"
           ]

rsr =  ["interpolate",
       ["linear"],
       ["get", "rsr"],
       0, "#FFE6EE",
       0.006, "#850101"
       ]

def pad_style(paint, alpha):
    return {
    "version": 8,
    "sources": {
        "pad": {
            "type": "vector",
            "url": "pmtiles://" + pad_pmtiles,
            "attribution": "US PAD v3"}},
    "layers": [{
            "id": "public",
            "source": "pad",
            "source-layer": "pad-stats",
            "type": "fill",
            "paint": {
                "fill-color": paint,
                "fill-opacity": alpha
            }
        }]}

code_ex='''
m.add_cog_layer("https://data.source.coop/vizzuality/lg-land-carbon-data/natcrop_expansion_100m_cog.tif",
                palette="oranges", name="Cropland Expansion", transparent_bg=True, opacity = 0.7, zoom_to_layer=False)
'''
# +
## Map controls sidebar

with st.sidebar:

    "## Protected Areas"

    if st.toggle("PAD US-3", True):
        alpha = st.slider("transparency", 0.0, 1.0, 0.5)

        with st.expander("custom style"):
                custom = st.text_area(
                label = "Define a custom mapbox fill-color rule",
                value = custom_style, 
                height = 100)

        style_options = {
                         "GAP Status Code": gap,
                         "IUCN Status Code": iucn,
                         "Manager Type": manager,
                         "Fee/Easement": easement,
                         "Public Access": access,
                         "Mean Richness": richness,
                         "Mean RSR": rsr,
                         "custom": eval(custom)}

        style_choice = st.radio("Color protected Areas by", style_options)
        style = pad_style(style_options[style_choice], alpha)
        m.add_pmtiles(pad_pmtiles, name="Protected Areas (PAD-US-3)", style=style, overlay=True, show=True, zoom_to_layer=False)
        ## Add legend based on selected style?
        # m.add_legend(legend_dict=legend_dict)

    "## Data layers"
    if st.toggle("Species Richness", True):
        m.add_tile_layer(url="https://data.source.coop/cboettig/mobi/tiles/red/species-richness-all/{z}/{x}/{y}.png",
                         name="MOBI Species Richness",
                         attribution="NatureServe",
                         opacity=0.9
                        )
    
    if st.toggle("Range-Size Rarity"):
          m.add_tile_layer(url="https://data.source.coop/cboettig/mobi/tiles/green/range-size-rarity-all/{z}/{x}/{y}.png",
                         name="MOBI Range-Size Rarity",
                         attribution="NatureServe",
                         opacity=0.9
                        )
        #m.add_cog_layer("https://data.source.coop/cboettig/mobi/range-size-rarity-all/RSR_All.tif",
        #                palette="greens", name="Range-Size Rarity", transparent_bg=True, opacity = 0.9, zoom_to_layer=False)

    if st.toggle("Carbon Lost (2002-2022)"):
        m.add_cog_layer("https://data.source.coop/vizzuality/lg-land-carbon-data/deforest_carbon_100m_cog.tif",
                        palette="reds", name="Carbon Lost (2002-2022)", transparent_bg=True, opacity = 0.8, zoom_to_layer=False)
    
    if st.toggle("Irrecoverable Carbon"):
        m.add_cog_layer("https://data.source.coop/cboettig/carbon/cogs/irrecoverable_c_total_2018.tif",
                        palette="purples", name="Irrecoverable Carbon", transparent_bg=True, opacity = 0.8, zoom_to_layer=False)

    if st.toggle("Manageable Carbon"):
       m.add_cog_layer("https://data.source.coop/cboettig/carbon/cogs/manageable_c_total_2018.tif",
                        palette="greens", name="Manageable Carbon", transparent_bg=True, opacity = 0.8, zoom_to_layer=False)

    if st.toggle("Human Impact"):
        hi="https://data.source.coop/vizzuality/hfp-100/hfp_2021_100m_v1-2_cog.tif"
        m.add_cog_layer(hi, palette="purples", name="Human Impact", transparent_bg=True, opacity = 0.8, zoom_to_layer=False)

    if st.toggle("cropland expansion"):
        m.add_cog_layer("https://data.source.coop/vizzuality/lg-land-carbon-data/natcrop_expansion_100m_cog.tif",
                        palette="greens", name="cropland expansion", transparent_bg=True, opacity = 0.8, zoom_to_layer=False)

    if st.toggle("Biodiversity Intactness Loss"):
        m.add_cog_layer("https://data.source.coop/vizzuality/lg-land-carbon-data/natcrop_bii_100m_cog.tif",
                        palette="reds", name="biodiversity intactness loss", transparent_bg=True, opacity = 0.8, zoom_to_layer=False)
 
    if st.toggle("Forest Integrity Loss"):
        m.add_cog_layer("https://data.source.coop/vizzuality/lg-land-carbon-data/natcrop_fii_100m_cog.tif",
                        palette="reds", name="forest integrity loss", transparent_bg=True, opacity = 0.8, zoom_to_layer=False)



    if st.toggle("Custom map layers"):
        
        code = st.text_area(label = "leafmap code:",
                            value = code_ex, 
                            height = 100)
        eval(compile(code, "<string>", "exec"))

#    "## Boundaries"
#    boundaries = st.radio("Boundaries:",
#                          ["None",
#                           "State Boundaries",
#                           "County Boundaries",
#                           "Congressional District",  
#                           "custom"]
#    )

    "## Basemaps"
    if st.toggle("Shaded Relief Topo"):
        m.add_basemap("Esri.WorldShadedRelief")
   
    "## Additional elements"
    # Fire Polygons, USGS
    if st.toggle("Fire boundaries"):
        usgs = "https://data.source.coop/cboettig/fire/usgs-mtbs.pmtiles"
        combined_style = {
            "version": 8,
            "sources": {
                "source1": {
                    "type": "vector",
                    "url": "pmtiles://" + usgs,
                    "attribution": "USGS"}},
            "layers": [{
                    "id": "usgs",
                    "source": "source1",
                    "source-layer": "mtbs_perims_DD",
                    "type": "fill",
                    "paint": {"fill-color": "#FFA500", "fill-opacity": 0.4}}]}
        m.add_pmtiles(usgs, name="Fire", style=combined_style, overlay=True, show=True, zoom_to_layer=False)

# Map radio buttons to corresponding column:
select_column = {
                "GAP Status Code": "gap_code",
                "IUCN Status Code": "iucn_category",
                "Manager Type": "manager_group",
                "Fee/Easement": "category",
                "Public Access": "public_access",
                "Mean Richness": "manager_group",
                "Mean RSR": "manager_group",
                 "custom": "gap_code"}
column = select_column[style_choice]

# Map radio buttons to corresponding color-scheme:
select_colors = {
                "GAP Status Code": gap["stops"],
                "IUCN Status Code": iucn["stops"],
                "Manager Type": manager["stops"],
                "Fee/Easement": easement["stops"],
                "Public Access": access["stops"],
                "Mean Richness": manager["stops"],
                "Mean RSR": manager["stops"],
                "custom": manager["stops"]}
colors = (ibis
          .memtable(select_colors[style_choice], columns = [column, "color"])
          .to_pandas()
         )


main = st.container()

with main:
    map_col, stats_col = st.columns([2,1])

    with map_col:
        m.to_streamlit(height=700)


    @st.cache_resource
    def ibis_connection(parquet):
        return ibis.read_parquet(parquet)
    pad_data = ibis_connection(parquet)

    @st.cache_data()
    def summary_table(column = column, colors = colors):
        df = (pad_data
            .rename(area = "area_square_meters")
            .group_by(_[column])
            .aggregate(percent_protected =  100 * _.area.sum() / us_lower_48_area_m2,
                        mean_richness = (_.richness * _.area).sum() / _.area.sum(),
                        mean_rsr = (_.rsr * _.area).sum() / _.area.sum(),
                        carbon_lost = (_.deforest_carbon * _.area).sum() / _.area.sum(),
                        crop_expansion = (_.crop_expansion * _.area).sum() / _.area.sum(),
                        human_impact =  (_.human_impact * _.area).sum() / _.area.sum(),
                        )
            .mutate(percent_protected = _.percent_protected.round())
            .inner_join(colors, column)
            )
        df = df.to_pandas()
        df[column] = df[column].astype(str)
        return df

    df = summary_table(column, colors)
    total_percent = df.percent_protected.sum()


    base = alt.Chart(df).encode(
        alt.Theta("percent_protected:Q").stack(True),
        alt.Color("color:N").scale(None).legend(None)
    )

    area_chart = (
    base.mark_arc(innerRadius=40, outerRadius=70)
    ).properties(width=180, height=180)


    richness_chart = bar_chart(df, column, 'mean_richness')
    rsr_chart = bar_chart(df, column, 'mean_rsr')
    carbon_lost = bar_chart(df, column, 'carbon_lost')
    crop_expansion = bar_chart(df, column, 'crop_expansion')
    human_impact = bar_chart(df, column, 'human_impact')

    with stats_col:
        with st.container():
            col1, col2, col3 = st.columns(3)
            with col1:
                f"{total_percent}% Continental US Covered"
                st.altair_chart(area_chart, use_container_width=False)

            with col2:
                "Species Richness"
                st.altair_chart(richness_chart, use_container_width=True)

            with col3:
                "Range-Size Rarity"
                st.altair_chart(rsr_chart, use_container_width=True)

        with st.container():
            col1b, col2b, col3b = st.columns(3)
            with col1b:
                "Carbon Lost ('02-'22)"
                st.altair_chart(carbon_lost, use_container_width=True)

            with col2b:
                "Crop expansion"
                st.altair_chart(crop_expansion, use_container_width=True)

            with col3b:
                "Human Impact"
                st.altair_chart(human_impact, use_container_width=True)


st.divider()

footer = st.container()


with footer:
    '''
    ## Custom queries

    Input custom python code below to interactively explore the data. 

    '''

    col2_1, col2_2 = st.columns(2)



    with col2_1:
        query = st.text_area(
            label = "Python code:",
            value = sample_q, 
            height = 300)

    with col2_2:
        "Output table:"
        df = eval(query)
        st.write(df.to_pandas())

    st.divider()

    '''
    ## Credits

    Author: Carl Boettiger, UC Berkeley
    License: BSD-2-clause

    ### Data sources

    - US Protected Areas Database v3 by USGS, data hosted on https://beta.source.coop/cboettig/us-pad-3. Citation: https://doi.org/10.5066/P9Q9LQ4B, License: Public Domain
    - Carbon-loss by Vizzuality, on https://beta.source.coop/repositories/vizzuality/lg-land-carbon-data. Citation: https://doi.org/10.1101/2023.11.01.565036, License: CC-BY
    - Human Footprint by Vizzuality, on https://beta.source.coop/repositories/vizzuality/hfp-100.  Citation: https://doi.org/10.3389/frsen.2023.1130896, License: Public Domain
    - Fire polygons by USGS, reprocessed to PMTiles on https://beta.source.coop/cboettig/fire/. License: Public Domain.
    - Irrecoverable Carbon from Conservation International, reprocessed to COG on https://beta.source.coop/cboettig/carbon, citation: https://doi.org/10.1038/s41893-021-00803-6, License: CC-BY-NC

    ### Software

    Proudly built with a free and Open Source software stack: Streamlit (reactive application), HuggingFace (application hosting), Source.Coop (data hosting),
    using cloud-native data serializations in COG, PMTiles, and GeoParquet. Coded in pure python using leafmap and duckdb. Map styling with [MapLibre](https://maplibre.org/).
    '''