Spaces:
Running
Running
File size: 21,671 Bytes
d2c79b3 c2b1848 dd0c7df 2749893 d2c79b3 593d846 d2c79b3 0c88eb4 d2c79b3 2749893 dd0c7df d2c79b3 73b7b64 dd0c7df 73b7b64 dd0c7df 73b7b64 56784d5 73b7b64 56784d5 73b7b64 d11530a dd0c7df 73b7b64 dd0c7df 73b7b64 2749893 dd0c7df 73b7b64 2749893 73b7b64 2749893 dd0c7df 73b7b64 dd0c7df 2749893 73b7b64 2749893 73b7b64 2749893 73b7b64 2749893 73b7b64 2749893 73b7b64 2749893 73b7b64 2749893 56784d5 593d846 56784d5 593d846 56784d5 593d846 56784d5 593d846 56784d5 dd0c7df 73b7b64 dd0c7df 2749893 73b7b64 56784d5 2749893 dd0c7df 2749893 593d846 2749893 dd0c7df 2749893 dd0c7df d2c79b3 81d856c 0c88eb4 d2c79b3 0c88eb4 d2c79b3 73b7b64 d2c79b3 0c88eb4 d2c79b3 0c88eb4 d2c79b3 0c88eb4 d2c79b3 2749893 dd0c7df 2749893 d2c79b3 81d856c 0c88eb4 d2c79b3 81d856c d2c79b3 73b7b64 2749893 d48b10c 73b7b64 d2c79b3 0c88eb4 2749893 d48b10c 2749893 dd0c7df 0c88eb4 2a9767f 2749893 56784d5 2749893 73b7b64 2749893 dd0c7df d2c79b3 81d856c 2749893 73b7b64 dd0c7df 73b7b64 dd0c7df 73b7b64 dd0c7df 73b7b64 dd0c7df 73b7b64 2749893 dd0c7df 2749893 dd0c7df 81d856c 01d9d25 dd0c7df d48b10c 01d9d25 d48b10c dd0c7df d11530a dd0c7df 73b7b64 dd0c7df 73b7b64 dd0c7df 73b7b64 dd0c7df 73b7b64 d11530a 73b7b64 d11530a 73b7b64 dd0c7df 73b7b64 dd0c7df 593d846 dd0c7df 73b7b64 dd0c7df 73b7b64 0c88eb4 dd0c7df 73b7b64 dd0c7df 73b7b64 dd0c7df 73b7b64 dd0c7df 73b7b64 dd0c7df 73b7b64 dd0c7df 73b7b64 608b34b 73b7b64 dd0c7df 73b7b64 dd0c7df 73b7b64 608b34b 73b7b64 56784d5 73b7b64 608b34b e5c3ed4 73b7b64 e5c3ed4 81d856c d2c79b3 2749893 d2c79b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
{
"cells": [
{
"cell_type": "markdown",
"id": "4b4adc2a-bf0c-4ace-87be-dbaf90be0125",
"metadata": {},
"source": [
"# Pre-processing script"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f7e6298c-d886-432a-a1b7-c3fee914c24f",
"metadata": {
"editable": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [],
"source": [
"import ibis\n",
"from ibis import _\n",
"import geopandas as gpd\n",
"import duckdb\n",
"from cng.utils import ST_MakeValid\n",
"\n",
"con = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
"path = '../data/ca-layers/'\n",
"\n",
"# CA Nature data \n",
"ca_raw_parquet = \"https://data.source.coop/cboettig/ca30x30/ca_areas.parquet\"\n",
"\n",
"# Boundary of CA, used to computed 'non-conserved' areas\n",
"ca_boundary_shape = \"../data/ca_shape\"\n",
"ca_boundary_parquet = path + \"ca_boundary.parquet\"\n",
"\n",
"# Ecoregions\n",
"ca_ecoregions_shape = \"../data/ecoregions/ACE_Ecoregions_BaileyDerived_2022.shp\"\n",
"ca_ecoregions_parquet = path + \"ace_ecoregions.parquet\"\n",
"\n",
"# file to save non-conserved areas; costly operation so we save results \n",
"ca_nonconserved_parquet = path + \"ca-30x30-nonconserved-500m-simplified.parquet\" \n",
"ca_nonconserved_eco_parquet = path + \"ca-30x30-nonconserved-500m-simplified-eco.parquet\" \n",
"\n",
"# temp file used to compute zonal stats: has conserved + non-conserved areas \n",
"ca_temp_parquet = path + \"ca-30x30-temp.parquet\" \n",
"\n",
"# final files: conserved + non-conserved areas + zonal stats \n",
"ca_parquet = path + \"ca-30x30.parquet\"\n",
"ca_pmtiles = path + \"ca-30x30.pmtiles\" #excludes non-conserved geometries\n",
"\n",
"#vector data \n",
"svi = path + 'SVI2022_US_tract' #EPSG:4326\n",
"justice40 = path + 'disadvantaged-communities'#ESRI:102039\n",
"fire = path + 'calfire-2023' #EPSG:4326\n",
"rxburn = path + 'calfire-rxburn-2023' #EPSG:4326\n",
"\n",
"#raster data \n",
"irrecoverable_c = path + 'ca_irrecoverable_c_2018_cog' # EPSG:3857\n",
"manageable_c = path + 'ca_manageable_c_2018_cog'# EPSG:3857\n",
"richness = path + 'SpeciesRichness_All' # EPSG:3857\n",
"rsr = path + 'RSR_All'# EPSG:3857"
]
},
{
"cell_type": "markdown",
"id": "907235f6-48a5-4c55-b779-3bb6839acf2b",
"metadata": {},
"source": [
"# Step 1: Computing all \"non-conserved\" areas"
]
},
{
"cell_type": "markdown",
"id": "c6c1cbf5-bc6e-4238-ab87-c467067235c0",
"metadata": {},
"source": [
"#### Convert CA boundary to parquet "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "38091012-586e-4091-8f0d-a0aa868a04cf",
"metadata": {},
"outputs": [],
"source": [
"# Using a shape file of CA boundary and converting to parquet file \n",
"ca_boundary = gpd.read_file(ca_boundary_shape).to_crs(epsg = 3310)\n",
"ca_boundary.to_parquet(ca_boundary_parquet)"
]
},
{
"cell_type": "markdown",
"id": "3dfcb35b-e6a9-4a89-af05-c65909191f2b",
"metadata": {},
"source": [
"#### Computing difference: Non-conserved areas = CA Boundary - Conserved Areas"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7aedc147-6601-4ca7-9316-ddea5cab154a",
"metadata": {},
"outputs": [],
"source": [
"# This chunk will take ~2 hours to run \n",
"conn = ibis.duckdb.connect(\"tmp\", extensions=[\"spatial\"]) #save to disk\n",
"\n",
"# CA Boundary \n",
"ca_all_tbl = (\n",
" conn.read_parquet(ca_boundary_parquet)\n",
" .rename(geom = \"geometry\")\n",
" .cast({\"geom\": \"geometry\"})\n",
")\n",
"\n",
"\n",
"# CA-Nature data / protected areas \n",
"tbl = (\n",
" conn.read_parquet(ca_raw_parquet)\n",
" .cast({\"SHAPE\": \"geometry\"})\n",
" .rename(geom = \"SHAPE\", gid = \"OBJECTID\")\n",
")\n",
"\n",
"conn.create_table(\"t1\", ca_all_tbl, overwrite = True)\n",
"conn.create_table(\"t2\", tbl.filter(_.Release_Year == 2024), overwrite = True)\n",
"\n",
"# simplified all geometries 500m so the kernel doesn't crash\n",
"# computing difference\n",
"conn.conn.execute('''\n",
"CREATE TABLE not_in_pad AS\n",
"WITH t2_simplified AS (\n",
" SELECT ST_Simplify(geom, 500) AS geom\n",
" FROM t2\n",
"),\n",
"t2_union AS (\n",
" SELECT ST_Union_Agg(geom) AS geom\n",
" FROM t2_simplified\n",
")\n",
"SELECT \n",
" ST_Difference(t1.geom, t2_union.geom) AS geom\n",
"FROM \n",
" t1, t2_union;\n",
"''')\n",
"\n",
"\n",
"# save to parquet file so we don't have to run this again\n",
"nonconserved = conn.table(\"not_in_pad\")\n",
"nonconserved.execute().to_parquet(ca_nonconserved_parquet)"
]
},
{
"cell_type": "markdown",
"id": "845eb0ed-3392-4346-9b7e-959cd97a274f",
"metadata": {},
"source": [
"#### Get ecoregions - convert them to parquet"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b43fee2c-b8c4-4076-b87b-089676031165",
"metadata": {},
"outputs": [],
"source": [
"eco = gpd.read_file(ca_ecoregions_shape)\n",
"eco.to_parquet(ca_ecoregions_parquet)"
]
},
{
"cell_type": "markdown",
"id": "b5689850-80fa-4cc9-87e9-46074b8d9107",
"metadata": {},
"source": [
"#### Compute ecoregion for non-conserved areas"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "070bbdde-b141-4a63-8f8a-984dd01fd51a",
"metadata": {},
"outputs": [],
"source": [
"con = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
"\n",
"eco = con.read_parquet(ca_ecoregions_parquet)\n",
"non = con.read_parquet(ca_nonconserved_parquet)\n",
"\n",
"con.create_table(\"eco\", eco.select(\"ECOREGION_\",\"geometry\"), overwrite = True)\n",
"con.create_table(\"non\", non, overwrite = True)\n",
"\n",
"#split up the non-conserved areas by ecoregions\n",
"con.con.execute('''\n",
"CREATE TABLE non_conserved_eco AS\n",
"SELECT \n",
" non.*, \n",
" eco.ECOREGION_ AS ecoregion,\n",
" ST_Intersection(non.geom, eco.geometry) AS geom -- Split non into ecoregions\n",
"FROM non\n",
"JOIN eco \n",
"ON ST_Intersects(non.geom, eco.geometry)\n",
"WHERE ST_GeometryType(ST_Intersection(non.geom, eco.geometry)) IN ('POLYGON', 'MULTIPOLYGON');\n",
"''')\n",
"\n",
"# save to parquet file so we don't have to run this again\n",
"non_eco = (con.table(\"non_conserved_eco\")\n",
" .drop('geom')\n",
" .rename(geom = \"geom_1\")\n",
" .mutate(geom = ST_MakeValid(_.geom))\n",
" .mutate(id=ibis.row_number().over())\n",
" )\n",
"\n",
"non_conserved_eco = non_eco.execute()\n",
"non_conserved_eco.to_parquet(ca_nonconserved_eco_parquet)"
]
},
{
"cell_type": "markdown",
"id": "ce52b1e0-027e-4915-9e7b-e51e946560ed",
"metadata": {},
"source": [
"#### Non-conserved areas need to match CA Nature schema when merging"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0f9666d1-7c2b-45af-9399-e4189bba34f5",
"metadata": {},
"outputs": [],
"source": [
"# match CA Nature schema \n",
"nonconserved_clean = (\n",
" con.read_parquet(ca_nonconserved_eco_parquet)\n",
" .cast({\"geom\": \"geometry\"})\n",
" .mutate(established = ibis.null(), gap_code = 0, name = ibis.literal(\"Non-Conserved Areas\"),\n",
" access_type = ibis.null(), manager = ibis.null(), manager_type = ibis.null(),\n",
" easement = ibis.null(), type = ibis.literal(\"Land\"),\n",
" status = ibis.literal(\"non-conserved\"),\n",
" acres = _.geom.area() / 4046.8564224 #convert sq meters to acres\n",
" )\n",
" .cast({\"established\": \"string\", \"gap_code\": \"int16\", \"status\": \"string\",\"name\": \"string\",\n",
" \"access_type\": \"string\", \"manager\": \"string\", \"manager_type\": \"string\",\n",
" \"ecoregion\": \"string\", \"easement\": \"string\", \"id\": \"int64\", \"type\": \"string\",\n",
" \"acres\":\"float32\"}) #match schema to CA Nature\n",
")"
]
},
{
"cell_type": "markdown",
"id": "104254ef-f6e9-4f03-8797-de55091774d5",
"metadata": {},
"source": [
"# Step 2: Isolate pre-2024 from 2024 polygons"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a3d4f189-1563-4868-9f1f-64d67569df27",
"metadata": {},
"outputs": [],
"source": [
"# negative buffer to account for overlapping boundaries. \n",
"buffer = -30 #30m buffer \n",
"\n",
"tbl = (\n",
" con.read_parquet(ca_raw_parquet)\n",
" .cast({\"SHAPE\": \"geometry\"})\n",
" .rename(geom = \"SHAPE\")\n",
" .filter(_.reGAP < 3) # only gap 1 and 2 count towards 30x30\n",
")\n",
"\n",
"# polygons with release_year 2024 are a superset of release_year 2023. \n",
"# use anti_join to isolate the objects that are in release_year 2024 but not release_year 2023 (aka newly established). \n",
"tbl_2023 = tbl.filter(_.Release_Year == 2023).mutate(geom=_.geom.buffer(buffer)) \n",
"tbl_2024 = tbl.filter(_.Release_Year == 2024)\n",
"intersects = tbl_2024.anti_join(tbl_2023, _.geom.intersects(tbl_2023.geom))"
]
},
{
"cell_type": "markdown",
"id": "1f335433-ff89-4966-bf98-c11a0b233686",
"metadata": {},
"source": [
"# Step 3: Join all protected land data into single parquet file "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a59c976b-3c36-40f9-a15b-cefcd155c647",
"metadata": {},
"outputs": [],
"source": [
"# %%time\n",
"new2024 = intersects.select(\"OBJECTID\").mutate(established = ibis.literal(\"2024\")) # saving IDs to join on\n",
"\n",
"ca_merged = (con\n",
" .read_parquet(ca_raw_parquet)\n",
" .cast({\"SHAPE\": \"geometry\"})\n",
" .mutate(area = _.SHAPE.area())\n",
" .filter(_.Release_Year == 2024) # having both 2023 and 2024 is redudant since 2024 is the superset.\n",
" .left_join(new2024, \"OBJECTID\") # newly established 2024 polygons \n",
" .mutate(established=_.established.fill_null(\"pre-2024\")) \n",
" .rename(name = \"cpad_PARK_NAME\", access_type = \"cpad_ACCESS_TYP\", manager = \"cpad_MNG_AGENCY\",\n",
" manager_type = \"cpad_MNG_AG_LEV\", id = \"OBJECTID\", type = \"TYPE\", \n",
" ecoregion = \"CA_Ecoregion_Name\", acres = \"Acres\", gap_code = \"reGAP\", geom = \"SHAPE\")\n",
" .cast({\"gap_code\": \"int16\"})\n",
" .cast({\"id\": \"int64\"})\n",
" .mutate(manager = _.manager.substitute({\"\": \"Unknown\"})) \n",
" .mutate(manager_type = _.manager_type.substitute({\"\": \"Unknown\"}))\n",
" .mutate(access_type = _.access_type.substitute({\"\": \"Unknown Access\"}))\n",
" .mutate(name = _.name.substitute({\"\": \"Unknown\"}))\n",
" .mutate(manager_type = _.manager_type.substitute({\"Home Owners Association\": \"HOA\"}))\n",
" .mutate(easement=_.Easement.cast(\"string\").substitute({\"0\": \"False\", \"1\": \"True\"}))\n",
" .mutate(status=_.gap_code.cast(\"string\")\n",
" .substitute({\"1\": \"30x30-conserved\", \"2\": \"30x30-conserved\", \"3\": \"other-conserved\", \n",
" \"4\": \"unknown\"}))\n",
" .select(_.established, _.gap_code, _.status, _.name, _.access_type, _.manager, _.manager_type,\n",
" _.ecoregion, _.easement, _.acres, _.id, _.type, _.geom)\n",
" .union(nonconserved_clean)\n",
" .mutate(acres = _.acres.round(4))\n",
" .mutate(geom = ST_MakeValid(_.geom))\n",
" .drop_null(['geom'],how = \"any\")\n",
" )\n",
"\n",
"\n",
"gdf = ca_merged.execute()\n",
"gdf.set_crs(\"epsg:3310\").to_parquet(ca_temp_parquet) # saving to temp file to compute zonal stats "
]
},
{
"cell_type": "markdown",
"id": "44d64f2b-a65b-4ac1-9943-2d96f5c91e1d",
"metadata": {},
"source": [
"# Step 4: Compute zonal stats"
]
},
{
"cell_type": "markdown",
"id": "e129b0cc-ee7d-4e58-a8d8-d6f2476bd62c",
"metadata": {},
"source": [
"#### Functions: Reproject and compute overlap for vector data "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fdeeb7ac-efa0-4a7b-9143-72d8ec911809",
"metadata": {},
"outputs": [],
"source": [
"def reproject_vectors(file, vec): # change data layer projections to match CA Nature data \n",
" vec = vec.rename_geometry('geom')\n",
" vec[\"geom\"] = vec[\"geom\"].make_valid()\n",
" vec = vec.to_crs(\"EPSG:3310\")\n",
" vec.to_parquet(file + '-epsg3310.parquet')\n",
" return\n",
"\n",
"def vector_vector_stats(base, data_layer):\n",
" t1 = con.read_parquet(base).select(_.id, _.geom)\n",
" t2 = con.read_parquet(data_layer).select(_.geom, _.value)\n",
" expr = (t1\n",
" .left_join(t2, t1.geom.intersects(t2.geom))\n",
" .group_by(t1.id, t1.geom)\n",
" .agg(overlap_fraction = (t1.geom.intersection(t2.geom).area() / t1.geom.area() *t2.value) \n",
" .sum().coalesce(0).round(3) ) #weighted overlap, based on t2.value\n",
" )\n",
" ibis.to_sql(expr)\n",
" stats = expr.execute()\n",
" return stats[['id','overlap_fraction']]"
]
},
{
"cell_type": "markdown",
"id": "f45a0f52-6d18-45b4-8585-af3f1190b000",
"metadata": {},
"source": [
"#### Compute zonal stats with vector data "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b110da15-d2ac-4457-9241-f02f44dc436a",
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"vectors = [svi,justice40 ,fire,rxburn]\n",
"names = ['svi','disadvantaged_communities','fire','rxburn']\n",
"\n",
"# read in data if it's not already created \n",
"if 'gdf' not in locals(): \n",
" gdf_stats = gpd.read_parquet(ca_temp_parquet) \n",
"\n",
"else: \n",
" gdf_stats = gdf\n",
"\n",
" # set the index to the col we are joining on for gpd.join()\n",
"gdf_stats = gdf_stats.set_index('id')\n",
"\n",
"for file,name in zip(vectors,names):\n",
" vec = gpd.read_parquet(file + '.parquet') #load in vector data layer \n",
"\n",
" # filter: we only want 10 year range for fire\n",
" if name in ['fire','rxburn']:\n",
" vec = vec[vec['YEAR_']>=2013] \n",
" vec['value'] = 1 #used in overlap calculation, 1 = fire occured \n",
"\n",
" # filter: only want CA data, not nationwide. \n",
" if name == 'svi': \n",
" vec = vec[(vec['STATE']==\"California\") & (vec['RPL_THEMES'] != -999)] #removing empty values \n",
" vec['value'] = vec['RPL_THEMES'] #overlap calculation is weighted on svi index\n",
"\n",
" # filter: only want CA, and only disadvantaged communities \n",
" if name == 'disadvantaged_communities':\n",
" vec = vec[(vec['StateName']==\"California\") & (vec['Disadvan'] ==1)]\n",
" vec['value'] = 1 #used in overlap calculation, 1 = disadvantaged \n",
" \n",
" # change projection to match CA Nature data \n",
" reproject_vectors(file, vec) \n",
"\n",
" # compute zonal stats \n",
" vector_stats = vector_vector_stats(ca_temp_parquet, file + '-epsg3310.parquet') \n",
" vector_stats = vector_stats.rename(columns ={'overlap_fraction':name}) \n",
"\n",
" # joining new zonal stats column with CA Nature data. \n",
" gdf_stats = gdf_stats.join(vector_stats.set_index('id')) \n",
"\n",
"gdf_stats = gdf_stats.reset_index()\n",
"gdf_stats.to_parquet(ca_parquet) #save CA Nature + zonal stats "
]
},
{
"cell_type": "markdown",
"id": "e0fccaf3-50a8-4324-82fa-34838987334b",
"metadata": {},
"source": [
"#### Function: Reproject raster data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aade11d9-87b9-403d-bad1-3069663807a9",
"metadata": {},
"outputs": [],
"source": [
"import subprocess\n",
"\n",
"def raster_reprojection(input_file, output_file, epsg=\"EPSG:3310\"):\n",
" cmd = [\n",
" \"gdalwarp\",\n",
" \"-t_srs\", epsg,\n",
" input_file,\n",
" output_file\n",
" ]\n",
" try:\n",
" subprocess.run(cmd, check=True)\n",
" print(f\"Reprojection successful! Output saved to: {output_file}\")\n",
" except subprocess.CalledProcessError as e:\n",
" print(f\"Error occurred during reprojection: {e}\")"
]
},
{
"cell_type": "markdown",
"id": "94e924fd-d927-4458-ba1f-670b4047d149",
"metadata": {},
"source": [
"#### Compute zonal stats with raster data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3ce1bc61-eabd-4a73-ba34-a1707bc14f74",
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"import rasterio\n",
"from exactextract import exact_extract\n",
"\n",
"rasters = [irrecoverable_c, manageable_c, richness, rsr]\n",
"names = ['irrecoverable_carbon','manageable_carbon','richness','rsr']\n",
"\n",
"if 'gdf_stats' not in locals(): \n",
" gdf_stats = gpd.read_parquet(ca_parquet) # read in data if it's not already created \n",
" \n",
"# need to make the following changes to our data for exact_extract() to work:\n",
"gdf_stats = gdf_stats.rename(columns ={'id':'ca_id'}) #rename 'id' because it conflicts with a raster field. \n",
"gdf_stats.to_parquet(ca_parquet) #saving updated parquet to file to use for exact_extract()\n",
"\n",
"for file,name in zip(rasters,names):\n",
" raster_reprojection(file+'.tif', file+'_epsg3310.tif') #reproject rasters to match CA Nature\n",
" raster_stats = exact_extract(file+'_epsg3310.tif', ca_parquet, [\"mean\"], include_cols=[\"ca_id\"], output = 'pandas') #zonal stats \n",
" \n",
" #the column we want is 'band_1_mean'; these rasters have multiple bands. \n",
" if name in ['irrecoverable_carbon','manageable_carbon']:\n",
" raster_stats = raster_stats[['ca_id','band_1_mean']] \n",
" raster_stats = raster_stats.rename(columns ={'band_1_mean':name}) \n",
"\n",
" #these rasters have only 1 band, so zonal stats column is 'mean'\n",
" elif name in ['richness','rsr']:\n",
" raster_stats = raster_stats[['ca_id','mean']] \n",
" raster_stats = raster_stats.rename(columns ={'mean':name})\n",
"\n",
" raster_stats[name] = raster_stats[name].round(3) #rounding stats \n",
" \n",
" # joining with gpd.join(), need to set an index \n",
" gdf_stats = gdf_stats.set_index(\"ca_id\").join(raster_stats.set_index(\"ca_id\")) \n",
"\n",
" # exact_extract() won't work with index, so now that it's joined, we reset the index. \n",
" gdf_stats = gdf_stats.reset_index() \n",
"\n",
"gdf_stats = gdf_stats.rename(columns ={'ca_id':'id'}) #reverting back to \"id\" col name, since we are finished with exact_extract() \n",
"\n",
"\n",
"# reproject to epsg:4326 since that's what pmtiles requires and we want to match that \n",
"gdf_stats = gdf_stats.to_crs(\"epsg:4326\")\n",
"gdf_stats.to_parquet(ca_parquet) # save results "
]
},
{
"cell_type": "markdown",
"id": "ec619f4e-1338-492a-a334-a7796f4f55a1",
"metadata": {},
"source": [
"# Step 5: Upload file + Generate PMTiles"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "30f47b26-cd18-4e8c-a19b-9d1f19b10873",
"metadata": {},
"outputs": [],
"source": [
"from cng.utils import hf_upload, s3_cp,set_secrets, to_pmtiles\n",
"\n",
"# upload parquet to minio and HF\n",
"hf_upload('ca-30x30.parquet', ca_parquet)\n",
"s3_cp(ca_parquet, \"s3://public-ca30x30/ca-30x30.parquet\", \"minio\")\n",
"\n",
"#to use PMTiles, need to convert to geojson\n",
"ca_geojson = (con\n",
" .read_parquet(ca_parquet)\n",
" # .filter(_.status != 'non-conserved') #omitting the non-conserved to only for pmtiles \n",
" )\n",
"\n",
"#can't go directly from parquet -> pmtiles, need to go parquet -> geojson -> pmtiles \n",
"ca_geojson.execute().to_file(path + 'ca-30x30.geojson') \n",
"pmtiles = to_pmtiles(path+ 'ca-30x30.geojson', ca_pmtiles, options = ['--extend-zooms-if-still-dropping'])\n",
"\n",
"# upload pmtiles to minio and HF\n",
"hf_upload('ca-30x30.pmtiles', ca_pmtiles)\n",
"s3_cp(ca_pmtiles, \"s3://public-ca30x30/ca-30x30.pmtiles\", \"minio\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|