File size: 21,671 Bytes
d2c79b3
 
c2b1848
 
 
 
 
dd0c7df
2749893
 
d2c79b3
 
593d846
d2c79b3
0c88eb4
 
 
 
 
 
 
d2c79b3
 
 
 
2749893
 
dd0c7df
d2c79b3
73b7b64
dd0c7df
 
73b7b64
 
 
 
 
dd0c7df
73b7b64
56784d5
 
 
 
73b7b64
 
56784d5
73b7b64
 
 
 
 
 
 
d11530a
dd0c7df
73b7b64
 
 
 
dd0c7df
 
 
 
 
73b7b64
2749893
 
 
 
 
 
 
dd0c7df
 
 
 
 
 
 
 
73b7b64
2749893
 
 
 
 
 
 
 
 
 
73b7b64
 
2749893
 
dd0c7df
 
 
 
 
73b7b64
dd0c7df
 
2749893
 
 
 
 
 
 
 
73b7b64
2749893
 
 
73b7b64
2749893
 
 
 
 
 
 
73b7b64
2749893
 
 
 
73b7b64
 
2749893
 
 
73b7b64
2749893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73b7b64
 
 
2749893
 
56784d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593d846
56784d5
 
593d846
56784d5
 
 
 
 
 
 
 
 
593d846
56784d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593d846
 
56784d5
 
 
 
 
 
dd0c7df
 
 
 
 
73b7b64
dd0c7df
 
2749893
 
 
 
 
 
 
 
73b7b64
56784d5
2749893
dd0c7df
2749893
593d846
2749893
 
 
 
 
 
 
dd0c7df
2749893
 
 
 
 
 
 
dd0c7df
d2c79b3
 
 
 
81d856c
0c88eb4
d2c79b3
 
 
0c88eb4
 
d2c79b3
 
73b7b64
d2c79b3
 
0c88eb4
d2c79b3
0c88eb4
 
 
 
d2c79b3
0c88eb4
d2c79b3
 
2749893
 
 
 
 
dd0c7df
2749893
 
d2c79b3
 
81d856c
0c88eb4
d2c79b3
81d856c
d2c79b3
73b7b64
2749893
d48b10c
73b7b64
 
d2c79b3
 
0c88eb4
 
2749893
d48b10c
2749893
dd0c7df
 
 
0c88eb4
 
 
 
2a9767f
2749893
 
 
56784d5
2749893
 
73b7b64
2749893
dd0c7df
 
d2c79b3
81d856c
2749893
73b7b64
 
dd0c7df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73b7b64
 
 
 
 
dd0c7df
 
 
 
73b7b64
dd0c7df
 
 
73b7b64
 
dd0c7df
 
73b7b64
 
2749893
 
 
 
dd0c7df
2749893
 
dd0c7df
81d856c
 
 
 
01d9d25
dd0c7df
d48b10c
01d9d25
d48b10c
dd0c7df
d11530a
 
dd0c7df
73b7b64
 
 
 
 
 
 
 
 
dd0c7df
 
73b7b64
dd0c7df
 
 
73b7b64
 
dd0c7df
 
 
73b7b64
 
 
 
d11530a
73b7b64
 
 
 
 
d11530a
73b7b64
 
 
dd0c7df
73b7b64
 
 
 
 
dd0c7df
 
 
 
 
 
 
 
 
 
 
 
593d846
dd0c7df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73b7b64
 
 
 
 
 
dd0c7df
 
 
73b7b64
0c88eb4
dd0c7df
 
73b7b64
 
dd0c7df
 
 
73b7b64
 
dd0c7df
73b7b64
dd0c7df
 
73b7b64
dd0c7df
 
73b7b64
dd0c7df
73b7b64
608b34b
 
 
 
73b7b64
dd0c7df
 
 
 
 
 
 
73b7b64
dd0c7df
 
 
 
 
 
 
 
 
73b7b64
 
 
 
 
 
608b34b
 
73b7b64
56784d5
73b7b64
 
 
608b34b
e5c3ed4
73b7b64
 
 
e5c3ed4
81d856c
d2c79b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2749893
d2c79b3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "4b4adc2a-bf0c-4ace-87be-dbaf90be0125",
   "metadata": {},
   "source": [
    "# Pre-processing script"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f7e6298c-d886-432a-a1b7-c3fee914c24f",
   "metadata": {
    "editable": true,
    "slideshow": {
     "slide_type": ""
    },
    "tags": []
   },
   "outputs": [],
   "source": [
    "import ibis\n",
    "from ibis import _\n",
    "import geopandas as gpd\n",
    "import duckdb\n",
    "from cng.utils import ST_MakeValid\n",
    "\n",
    "con = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
    "path = '../data/ca-layers/'\n",
    "\n",
    "# CA Nature data \n",
    "ca_raw_parquet = \"https://data.source.coop/cboettig/ca30x30/ca_areas.parquet\"\n",
    "\n",
    "# Boundary of CA, used to computed 'non-conserved' areas\n",
    "ca_boundary_shape = \"../data/ca_shape\"\n",
    "ca_boundary_parquet = path + \"ca_boundary.parquet\"\n",
    "\n",
    "# Ecoregions\n",
    "ca_ecoregions_shape = \"../data/ecoregions/ACE_Ecoregions_BaileyDerived_2022.shp\"\n",
    "ca_ecoregions_parquet = path + \"ace_ecoregions.parquet\"\n",
    "\n",
    "# file to save non-conserved areas; costly operation so we save results \n",
    "ca_nonconserved_parquet = path + \"ca-30x30-nonconserved-500m-simplified.parquet\" \n",
    "ca_nonconserved_eco_parquet = path + \"ca-30x30-nonconserved-500m-simplified-eco.parquet\" \n",
    "\n",
    "# temp file used to compute zonal stats: has conserved + non-conserved areas \n",
    "ca_temp_parquet = path + \"ca-30x30-temp.parquet\"  \n",
    "\n",
    "# final files: conserved + non-conserved areas + zonal stats \n",
    "ca_parquet = path + \"ca-30x30.parquet\"\n",
    "ca_pmtiles = path + \"ca-30x30.pmtiles\" #excludes non-conserved geometries\n",
    "\n",
    "#vector data \n",
    "svi = path + 'SVI2022_US_tract' #EPSG:4326\n",
    "justice40 = path + 'disadvantaged-communities'#ESRI:102039\n",
    "fire = path + 'calfire-2023' #EPSG:4326\n",
    "rxburn = path + 'calfire-rxburn-2023' #EPSG:4326\n",
    "\n",
    "#raster data \n",
    "irrecoverable_c = path + 'ca_irrecoverable_c_2018_cog' # EPSG:3857\n",
    "manageable_c = path + 'ca_manageable_c_2018_cog'# EPSG:3857\n",
    "richness = path + 'SpeciesRichness_All' # EPSG:3857\n",
    "rsr = path + 'RSR_All'# EPSG:3857"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "907235f6-48a5-4c55-b779-3bb6839acf2b",
   "metadata": {},
   "source": [
    "# Step 1: Computing all \"non-conserved\" areas"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c6c1cbf5-bc6e-4238-ab87-c467067235c0",
   "metadata": {},
   "source": [
    "#### Convert CA boundary to parquet "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "38091012-586e-4091-8f0d-a0aa868a04cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Using a shape file of CA boundary and converting to parquet file \n",
    "ca_boundary = gpd.read_file(ca_boundary_shape).to_crs(epsg = 3310)\n",
    "ca_boundary.to_parquet(ca_boundary_parquet)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3dfcb35b-e6a9-4a89-af05-c65909191f2b",
   "metadata": {},
   "source": [
    "#### Computing difference: Non-conserved areas = CA Boundary - Conserved Areas"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7aedc147-6601-4ca7-9316-ddea5cab154a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# This chunk will take ~2 hours to run \n",
    "conn = ibis.duckdb.connect(\"tmp\", extensions=[\"spatial\"]) #save to disk\n",
    "\n",
    "# CA Boundary \n",
    "ca_all_tbl = (\n",
    "    conn.read_parquet(ca_boundary_parquet)\n",
    "    .rename(geom = \"geometry\")\n",
    "    .cast({\"geom\": \"geometry\"})\n",
    ")\n",
    "\n",
    "\n",
    "# CA-Nature data / protected areas \n",
    "tbl = (\n",
    "    conn.read_parquet(ca_raw_parquet)\n",
    "    .cast({\"SHAPE\": \"geometry\"})\n",
    "    .rename(geom = \"SHAPE\", gid = \"OBJECTID\")\n",
    ")\n",
    "\n",
    "conn.create_table(\"t1\", ca_all_tbl, overwrite = True)\n",
    "conn.create_table(\"t2\", tbl.filter(_.Release_Year == 2024), overwrite = True)\n",
    "\n",
    "# simplified all geometries 500m so the kernel doesn't crash\n",
    "# computing difference\n",
    "conn.conn.execute('''\n",
    "CREATE TABLE not_in_pad AS\n",
    "WITH t2_simplified AS (\n",
    "    SELECT ST_Simplify(geom, 500) AS geom\n",
    "    FROM t2\n",
    "),\n",
    "t2_union AS (\n",
    "    SELECT ST_Union_Agg(geom) AS geom\n",
    "    FROM t2_simplified\n",
    ")\n",
    "SELECT \n",
    "    ST_Difference(t1.geom, t2_union.geom) AS geom\n",
    "FROM \n",
    "    t1, t2_union;\n",
    "''')\n",
    "\n",
    "\n",
    "# save to parquet file so we don't have to run this again\n",
    "nonconserved = conn.table(\"not_in_pad\")\n",
    "nonconserved.execute().to_parquet(ca_nonconserved_parquet)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "845eb0ed-3392-4346-9b7e-959cd97a274f",
   "metadata": {},
   "source": [
    "#### Get ecoregions - convert them to parquet"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b43fee2c-b8c4-4076-b87b-089676031165",
   "metadata": {},
   "outputs": [],
   "source": [
    "eco = gpd.read_file(ca_ecoregions_shape)\n",
    "eco.to_parquet(ca_ecoregions_parquet)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b5689850-80fa-4cc9-87e9-46074b8d9107",
   "metadata": {},
   "source": [
    "#### Compute ecoregion for non-conserved areas"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "070bbdde-b141-4a63-8f8a-984dd01fd51a",
   "metadata": {},
   "outputs": [],
   "source": [
    "con = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
    "\n",
    "eco = con.read_parquet(ca_ecoregions_parquet)\n",
    "non = con.read_parquet(ca_nonconserved_parquet)\n",
    "\n",
    "con.create_table(\"eco\", eco.select(\"ECOREGION_\",\"geometry\"), overwrite = True)\n",
    "con.create_table(\"non\", non, overwrite = True)\n",
    "\n",
    "#split up the non-conserved areas by ecoregions\n",
    "con.con.execute('''\n",
    "CREATE TABLE non_conserved_eco AS\n",
    "SELECT \n",
    "    non.*, \n",
    "    eco.ECOREGION_ AS ecoregion,\n",
    "    ST_Intersection(non.geom, eco.geometry) AS geom  -- Split non into ecoregions\n",
    "FROM non\n",
    "JOIN eco \n",
    "ON ST_Intersects(non.geom, eco.geometry)\n",
    "WHERE ST_GeometryType(ST_Intersection(non.geom, eco.geometry)) IN ('POLYGON', 'MULTIPOLYGON');\n",
    "''')\n",
    "\n",
    "# save to parquet file so we don't have to run this again\n",
    "non_eco = (con.table(\"non_conserved_eco\")\n",
    "           .drop('geom')\n",
    "           .rename(geom = \"geom_1\")\n",
    "           .mutate(geom = ST_MakeValid(_.geom))\n",
    "           .mutate(id=ibis.row_number().over())\n",
    "          )\n",
    "\n",
    "non_conserved_eco = non_eco.execute()\n",
    "non_conserved_eco.to_parquet(ca_nonconserved_eco_parquet)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ce52b1e0-027e-4915-9e7b-e51e946560ed",
   "metadata": {},
   "source": [
    "#### Non-conserved areas need to match CA Nature schema when merging"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0f9666d1-7c2b-45af-9399-e4189bba34f5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# match CA Nature schema \n",
    "nonconserved_clean = (\n",
    "    con.read_parquet(ca_nonconserved_eco_parquet)\n",
    "    .cast({\"geom\": \"geometry\"})\n",
    "    .mutate(established = ibis.null(), gap_code = 0, name = ibis.literal(\"Non-Conserved Areas\"),\n",
    "            access_type = ibis.null(), manager = ibis.null(), manager_type = ibis.null(),\n",
    "            easement = ibis.null(), type = ibis.literal(\"Land\"),\n",
    "            status = ibis.literal(\"non-conserved\"),\n",
    "            acres = _.geom.area() / 4046.8564224 #convert sq meters to acres\n",
    "           )\n",
    "    .cast({\"established\": \"string\", \"gap_code\": \"int16\", \"status\": \"string\",\"name\": \"string\",\n",
    "          \"access_type\": \"string\", \"manager\": \"string\", \"manager_type\": \"string\",\n",
    "          \"ecoregion\": \"string\", \"easement\": \"string\", \"id\": \"int64\", \"type\": \"string\",\n",
    "          \"acres\":\"float32\"}) #match schema to CA Nature\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "104254ef-f6e9-4f03-8797-de55091774d5",
   "metadata": {},
   "source": [
    "# Step 2: Isolate pre-2024 from 2024 polygons"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a3d4f189-1563-4868-9f1f-64d67569df27",
   "metadata": {},
   "outputs": [],
   "source": [
    "# negative buffer to account for overlapping boundaries. \n",
    "buffer = -30 #30m buffer \n",
    "\n",
    "tbl = (\n",
    "    con.read_parquet(ca_raw_parquet)\n",
    "    .cast({\"SHAPE\": \"geometry\"})\n",
    "    .rename(geom = \"SHAPE\")\n",
    "    .filter(_.reGAP < 3) # only gap 1 and 2 count towards 30x30\n",
    ")\n",
    "\n",
    "# polygons with release_year 2024 are a superset of release_year 2023. \n",
    "# use anti_join to isolate the objects that are in release_year 2024 but not release_year 2023 (aka newly established). \n",
    "tbl_2023 = tbl.filter(_.Release_Year == 2023).mutate(geom=_.geom.buffer(buffer)) \n",
    "tbl_2024 = tbl.filter(_.Release_Year == 2024)\n",
    "intersects = tbl_2024.anti_join(tbl_2023, _.geom.intersects(tbl_2023.geom))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1f335433-ff89-4966-bf98-c11a0b233686",
   "metadata": {},
   "source": [
    "# Step 3: Join all protected land data into single parquet file "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a59c976b-3c36-40f9-a15b-cefcd155c647",
   "metadata": {},
   "outputs": [],
   "source": [
    "# %%time\n",
    "new2024 = intersects.select(\"OBJECTID\").mutate(established = ibis.literal(\"2024\")) # saving IDs to join on\n",
    "\n",
    "ca_merged = (con\n",
    "      .read_parquet(ca_raw_parquet)\n",
    "      .cast({\"SHAPE\": \"geometry\"})\n",
    "      .mutate(area = _.SHAPE.area())\n",
    "      .filter(_.Release_Year == 2024) # having both 2023 and 2024 is redudant since 2024 is the superset.\n",
    "      .left_join(new2024, \"OBJECTID\") # newly established 2024 polygons \n",
    "      .mutate(established=_.established.fill_null(\"pre-2024\")) \n",
    "      .rename(name = \"cpad_PARK_NAME\", access_type = \"cpad_ACCESS_TYP\", manager = \"cpad_MNG_AGENCY\",\n",
    "              manager_type = \"cpad_MNG_AG_LEV\", id = \"OBJECTID\", type = \"TYPE\", \n",
    "              ecoregion = \"CA_Ecoregion_Name\", acres = \"Acres\", gap_code = \"reGAP\", geom = \"SHAPE\")\n",
    "      .cast({\"gap_code\": \"int16\"})\n",
    "      .cast({\"id\": \"int64\"})\n",
    "      .mutate(manager = _.manager.substitute({\"\": \"Unknown\"})) \n",
    "      .mutate(manager_type = _.manager_type.substitute({\"\": \"Unknown\"}))\n",
    "      .mutate(access_type = _.access_type.substitute({\"\": \"Unknown Access\"}))\n",
    "      .mutate(name = _.name.substitute({\"\": \"Unknown\"}))\n",
    "      .mutate(manager_type = _.manager_type.substitute({\"Home Owners Association\": \"HOA\"}))\n",
    "      .mutate(easement=_.Easement.cast(\"string\").substitute({\"0\": \"False\", \"1\": \"True\"}))\n",
    "      .mutate(status=_.gap_code.cast(\"string\")\n",
    "              .substitute({\"1\": \"30x30-conserved\", \"2\": \"30x30-conserved\", \"3\": \"other-conserved\", \n",
    "                           \"4\": \"unknown\"}))\n",
    "      .select(_.established, _.gap_code, _.status, _.name, _.access_type, _.manager, _.manager_type,\n",
    "              _.ecoregion, _.easement, _.acres, _.id, _.type, _.geom)\n",
    "      .union(nonconserved_clean)\n",
    "      .mutate(acres = _.acres.round(4))\n",
    "      .mutate(geom = ST_MakeValid(_.geom))\n",
    "      .drop_null(['geom'],how = \"any\")\n",
    "     )\n",
    "\n",
    "\n",
    "gdf = ca_merged.execute()\n",
    "gdf.set_crs(\"epsg:3310\").to_parquet(ca_temp_parquet) # saving to temp file to compute zonal stats "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "44d64f2b-a65b-4ac1-9943-2d96f5c91e1d",
   "metadata": {},
   "source": [
    "# Step 4: Compute zonal stats"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e129b0cc-ee7d-4e58-a8d8-d6f2476bd62c",
   "metadata": {},
   "source": [
    "#### Functions: Reproject and compute overlap for vector data "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fdeeb7ac-efa0-4a7b-9143-72d8ec911809",
   "metadata": {},
   "outputs": [],
   "source": [
    "def reproject_vectors(file, vec): # change data layer projections to match CA Nature data \n",
    "    vec = vec.rename_geometry('geom')\n",
    "    vec[\"geom\"] = vec[\"geom\"].make_valid()\n",
    "    vec = vec.to_crs(\"EPSG:3310\")\n",
    "    vec.to_parquet(file + '-epsg3310.parquet')\n",
    "    return\n",
    "\n",
    "def vector_vector_stats(base, data_layer):\n",
    "    t1 = con.read_parquet(base).select(_.id, _.geom)\n",
    "    t2 = con.read_parquet(data_layer).select(_.geom, _.value)\n",
    "    expr = (t1\n",
    "     .left_join(t2, t1.geom.intersects(t2.geom))\n",
    "     .group_by(t1.id, t1.geom)\n",
    "     .agg(overlap_fraction = (t1.geom.intersection(t2.geom).area() / t1.geom.area() *t2.value) \n",
    "          .sum().coalesce(0).round(3) ) #weighted overlap, based on t2.value\n",
    "    )\n",
    "    ibis.to_sql(expr)\n",
    "    stats = expr.execute()\n",
    "    return stats[['id','overlap_fraction']]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f45a0f52-6d18-45b4-8585-af3f1190b000",
   "metadata": {},
   "source": [
    "#### Compute zonal stats with vector data "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b110da15-d2ac-4457-9241-f02f44dc436a",
   "metadata": {},
   "outputs": [],
   "source": [
    "%%time\n",
    "vectors = [svi,justice40 ,fire,rxburn]\n",
    "names = ['svi','disadvantaged_communities','fire','rxburn']\n",
    "\n",
    "# read in data if it's not already created \n",
    "if 'gdf' not in locals(): \n",
    "    gdf_stats = gpd.read_parquet(ca_temp_parquet) \n",
    "\n",
    "else: \n",
    "    gdf_stats = gdf\n",
    "\n",
    " # set the index to the col we are joining on for gpd.join()\n",
    "gdf_stats = gdf_stats.set_index('id')\n",
    "\n",
    "for file,name in zip(vectors,names):\n",
    "    vec = gpd.read_parquet(file + '.parquet') #load in vector data layer \n",
    "\n",
    "    # filter: we only want 10 year range for fire\n",
    "    if name in ['fire','rxburn']:\n",
    "        vec = vec[vec['YEAR_']>=2013] \n",
    "        vec['value'] = 1 #used in overlap calculation, 1 = fire occured \n",
    "\n",
    "     # filter: only want CA data, not nationwide. \n",
    "    if name == 'svi': \n",
    "        vec = vec[(vec['STATE']==\"California\") & (vec['RPL_THEMES'] != -999)] #removing empty values \n",
    "        vec['value'] = vec['RPL_THEMES'] #overlap calculation is weighted on svi index\n",
    "\n",
    "    # filter: only want CA, and only disadvantaged communities \n",
    "    if name == 'disadvantaged_communities':\n",
    "        vec = vec[(vec['StateName']==\"California\") & (vec['Disadvan'] ==1)]\n",
    "        vec['value'] = 1 #used in overlap calculation, 1 = disadvantaged  \n",
    "        \n",
    "    # change projection to match CA Nature data \n",
    "    reproject_vectors(file, vec) \n",
    "\n",
    "    # compute zonal stats \n",
    "    vector_stats = vector_vector_stats(ca_temp_parquet, file + '-epsg3310.parquet') \n",
    "    vector_stats = vector_stats.rename(columns ={'overlap_fraction':name}) \n",
    "\n",
    "    # joining new zonal stats column with CA Nature data. \n",
    "    gdf_stats = gdf_stats.join(vector_stats.set_index('id')) \n",
    "\n",
    "gdf_stats = gdf_stats.reset_index()\n",
    "gdf_stats.to_parquet(ca_parquet) #save CA Nature + zonal stats "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e0fccaf3-50a8-4324-82fa-34838987334b",
   "metadata": {},
   "source": [
    "#### Function: Reproject raster data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aade11d9-87b9-403d-bad1-3069663807a9",
   "metadata": {},
   "outputs": [],
   "source": [
    "import subprocess\n",
    "\n",
    "def raster_reprojection(input_file, output_file, epsg=\"EPSG:3310\"):\n",
    "    cmd = [\n",
    "        \"gdalwarp\",\n",
    "        \"-t_srs\", epsg,\n",
    "        input_file,\n",
    "        output_file\n",
    "    ]\n",
    "    try:\n",
    "        subprocess.run(cmd, check=True)\n",
    "        print(f\"Reprojection successful! Output saved to: {output_file}\")\n",
    "    except subprocess.CalledProcessError as e:\n",
    "        print(f\"Error occurred during reprojection: {e}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "94e924fd-d927-4458-ba1f-670b4047d149",
   "metadata": {},
   "source": [
    "#### Compute zonal stats with raster data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3ce1bc61-eabd-4a73-ba34-a1707bc14f74",
   "metadata": {},
   "outputs": [],
   "source": [
    "%%time\n",
    "import rasterio\n",
    "from exactextract import exact_extract\n",
    "\n",
    "rasters = [irrecoverable_c, manageable_c, richness, rsr]\n",
    "names = ['irrecoverable_carbon','manageable_carbon','richness','rsr']\n",
    "\n",
    "if 'gdf_stats' not in locals(): \n",
    "    gdf_stats = gpd.read_parquet(ca_parquet) # read in data if it's not already created \n",
    "    \n",
    "# need to make the following changes to our data for exact_extract() to work:\n",
    "gdf_stats = gdf_stats.rename(columns ={'id':'ca_id'}) #rename 'id' because it conflicts with a raster field. \n",
    "gdf_stats.to_parquet(ca_parquet) #saving updated parquet to file to use for exact_extract()\n",
    "\n",
    "for file,name in zip(rasters,names):\n",
    "    raster_reprojection(file+'.tif', file+'_epsg3310.tif') #reproject rasters to match CA Nature\n",
    "    raster_stats = exact_extract(file+'_epsg3310.tif', ca_parquet, [\"mean\"], include_cols=[\"ca_id\"], output = 'pandas') #zonal stats \n",
    "    \n",
    "    #the column we want is 'band_1_mean'; these rasters have multiple bands. \n",
    "    if name in ['irrecoverable_carbon','manageable_carbon']:\n",
    "        raster_stats = raster_stats[['ca_id','band_1_mean']] \n",
    "        raster_stats = raster_stats.rename(columns ={'band_1_mean':name}) \n",
    "\n",
    "    #these rasters have only 1 band, so zonal stats column is 'mean'\n",
    "    elif name in ['richness','rsr']:\n",
    "        raster_stats = raster_stats[['ca_id','mean']] \n",
    "        raster_stats = raster_stats.rename(columns ={'mean':name})\n",
    "\n",
    "    raster_stats[name] = raster_stats[name].round(3) #rounding stats \n",
    "     \n",
    "    # joining with gpd.join(), need to set an index \n",
    "    gdf_stats = gdf_stats.set_index(\"ca_id\").join(raster_stats.set_index(\"ca_id\")) \n",
    "\n",
    "    # exact_extract() won't work with index, so now that it's joined, we reset the index. \n",
    "    gdf_stats = gdf_stats.reset_index() \n",
    "\n",
    "gdf_stats = gdf_stats.rename(columns ={'ca_id':'id'}) #reverting back to \"id\" col name, since we are finished with exact_extract() \n",
    "\n",
    "\n",
    "# reproject to epsg:4326 since that's what pmtiles requires and we want to match that \n",
    "gdf_stats = gdf_stats.to_crs(\"epsg:4326\")\n",
    "gdf_stats.to_parquet(ca_parquet) # save results "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ec619f4e-1338-492a-a334-a7796f4f55a1",
   "metadata": {},
   "source": [
    "# Step 5: Upload file + Generate PMTiles"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "30f47b26-cd18-4e8c-a19b-9d1f19b10873",
   "metadata": {},
   "outputs": [],
   "source": [
    "from cng.utils import hf_upload, s3_cp,set_secrets, to_pmtiles\n",
    "\n",
    "# upload parquet to minio and HF\n",
    "hf_upload('ca-30x30.parquet', ca_parquet)\n",
    "s3_cp(ca_parquet, \"s3://public-ca30x30/ca-30x30.parquet\", \"minio\")\n",
    "\n",
    "#to use PMTiles, need to convert to geojson\n",
    "ca_geojson = (con\n",
    "            .read_parquet(ca_parquet)\n",
    "            # .filter(_.status != 'non-conserved') #omitting the non-conserved to only for pmtiles  \n",
    "            )\n",
    "\n",
    "#can't go directly from parquet -> pmtiles, need to go parquet -> geojson -> pmtiles \n",
    "ca_geojson.execute().to_file(path + 'ca-30x30.geojson') \n",
    "pmtiles = to_pmtiles(path+ 'ca-30x30.geojson', ca_pmtiles, options = ['--extend-zooms-if-still-dropping'])\n",
    "\n",
    "# upload pmtiles  to minio and HF\n",
    "hf_upload('ca-30x30.pmtiles', ca_pmtiles)\n",
    "s3_cp(ca_pmtiles, \"s3://public-ca30x30/ca-30x30.pmtiles\", \"minio\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}