|
import gradio as gr |
|
from asr import transcribe_multiple_files, ASR_LANGUAGES, model |
|
from lid import identify, LID_EXAMPLES |
|
from csv_processor import CSV_FILE_PATH |
|
import logging |
|
import soundfile as sf |
|
import os |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
logger = logging.getLogger(__name__) |
|
|
|
def download_csv(): |
|
file_path = CSV_FILE_PATH |
|
if os.path.exists(file_path): |
|
return file_path |
|
else: |
|
logger.error(f"file {file_path} not found!") |
|
full_path = "/home/user/app/"+ file_path |
|
exist_full_path = os.path.exists(full_path) |
|
res = "found" if exist_full_path else "not found" |
|
logger.error(f"file {exist_full_path} {res}!") |
|
return None |
|
|
|
|
|
language_options = [f"{k} ({v})" for k, v in ASR_LANGUAGES.items()] |
|
bam_val = "bam (Bamanankan)" |
|
bam_index = 0 if bam_val not in language_options else language_options.index(bam_val) |
|
|
|
download_interface = gr.Interface( |
|
fn=download_csv, |
|
inputs=[], |
|
outputs=gr.File(label="Download CSV"), |
|
title="Download CSV file", |
|
description="Download file audio_plus_hash_uniq_07102024.csv" |
|
) |
|
|
|
|
|
mms_transcribe = gr.Interface( |
|
fn=transcribe_multiple_files, |
|
inputs=[ |
|
gr.File(type="filepath"), |
|
gr.Dropdown( |
|
choices=language_options, |
|
label="Language", |
|
value=language_options[bam_index] if language_options else None, |
|
), |
|
gr.Textbox(label="Optional: Provide your own transcription"), |
|
], |
|
outputs=gr.Textbox(label="Transcriptions", lines=10), |
|
title="Speech-to-text", |
|
description="Transcribe multiple audio files in your desired language.", |
|
allow_flagging="never", |
|
) |
|
|
|
mms_identify = gr.Interface( |
|
fn=identify, |
|
inputs=[gr.Audio()], |
|
outputs=gr.Label(num_top_classes=10), |
|
examples=LID_EXAMPLES, |
|
title="Language Identification", |
|
description="Identify the language of input audio.", |
|
allow_flagging="never", |
|
) |
|
|
|
tabbed_interface = gr.TabbedInterface( |
|
[mms_transcribe, mms_identify, download_interface], |
|
["Speech-to-text", "Language Identification", "Download CSV file"], |
|
) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
"<p align='center' style='font-size: 20px;'>MMS: Scaling Speech Technology to 1000+ languages demo. See our <a href='https://ai.facebook.com/blog/multilingual-model-speech-recognition/'>blog post</a> and <a href='https://arxiv.org/abs/2305.13516'>paper</a>.</p>" |
|
) |
|
gr.HTML( |
|
"""<center>Click on the appropriate tab to explore Speech-to-text (ASR) and Language identification (LID) demos.</center>""" |
|
) |
|
gr.HTML( |
|
"""<center>You can also finetune MMS models on your data using the recipes provided here - <a href='https://huggingface.co/blog/mms_adapters'>ASR</a> <a href='https://github.com/ylacombe/finetune-hf-vits'>TTS</a></center>""" |
|
) |
|
gr.HTML( |
|
"""<center><a href="https://huggingface.co/spaces/facebook/MMS?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"><img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> for more control and no queue.</center>""" |
|
) |
|
|
|
tabbed_interface.render() |
|
gr.HTML( |
|
""" |
|
<div class="footer" style="text-align:center"> |
|
<p> |
|
Model by <a href="https://ai.facebook.com" style="text-decoration: underline;" target="_blank">Meta AI</a> - Gradio Demo by 🤗 Hugging Face |
|
</p> |
|
</div> |
|
""" |
|
) |
|
|
|
if __name__ == "__main__": |
|
mms_transcribe.launch() |