File size: 14,820 Bytes
b4bbaee
 
cbff93c
 
 
e5c8ff6
 
282dd48
978ab36
8a11e5e
cbff93c
282dd48
e5c8ff6
 
cbff93c
282dd48
 
 
cbff93c
282dd48
 
 
b4bbaee
282dd48
 
 
e5c8ff6
282dd48
 
 
978ab36
e5c8ff6
282dd48
 
 
 
8a11e5e
282dd48
 
 
 
 
 
 
 
 
 
 
 
8a11e5e
282dd48
8a11e5e
282dd48
 
e5c8ff6
282dd48
8a11e5e
282dd48
978ab36
 
 
 
8a11e5e
282dd48
 
e5c8ff6
282dd48
 
 
978ab36
282dd48
 
 
978ab36
282dd48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c8ff6
282dd48
 
978ab36
 
282dd48
 
8a11e5e
 
 
282dd48
 
 
 
 
 
 
 
 
 
 
978ab36
282dd48
8a11e5e
282dd48
8a11e5e
 
 
282dd48
978ab36
282dd48
 
 
 
e5c8ff6
282dd48
8a11e5e
282dd48
 
 
 
 
 
 
 
 
 
 
 
 
 
978ab36
8a11e5e
282dd48
 
 
 
 
 
 
8a11e5e
282dd48
8a11e5e
 
 
 
 
 
282dd48
 
 
 
 
8a11e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282dd48
978ab36
8a11e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282dd48
 
8a11e5e
978ab36
8a11e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
978ab36
282dd48
8a11e5e
 
 
 
 
 
 
 
 
282dd48
8a11e5e
282dd48
8a11e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282dd48
 
8a11e5e
cbff93c
282dd48
 
8a11e5e
282dd48
 
 
 
 
978ab36
 
 
 
 
 
 
282dd48
 
 
978ab36
 
 
 
282dd48
978ab36
 
282dd48
b4bbaee
cbff93c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import gradio as gr
import re
from collections import Counter
from datetime import datetime
import emoji
import logging
from typing import Tuple, List, Optional
import statistics
import csv
from io import StringIO

# Настройка логирования
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def clean_text(text):
    """Очищает текст от лишних пробелов и переносов строк"""
    return ' '.join(text.split())

def count_emojis(text):
    """Подсчитывает количество эмодзи в тексте"""
    return len([c for c in text if c in emoji.EMOJI_DATA])

def extract_mentions(text):
    """Извлекает упоминания пользователей из текста"""
    return re.findall(r'@[\w\.]+', text)

def get_comment_words(text):
    """Получает список слов из комментария для анализа"""
    words = re.findall(r'\w+', text.lower())
    return [w for w in words if len(w) > 2]

def analyze_sentiment(text):
    """Расширенный анализ тональности по эмодзи и ключевым словам"""
    positive_indicators = ['🔥', '❤️', '👍', '😊', '💪', '👏', '🎉', '♥️', '😍', '🙏',
                         'круто', 'супер', 'класс', 'огонь', 'пушка', 'отлично', 'здорово',
                         'прекрасно', 'молодец', 'красота', 'спасибо', 'топ', 'лучший']
    negative_indicators = ['👎', '😢', '😞', '😠', '😡', '💔', '😕', '😑', 
                         'плохо', 'ужас', 'отстой', 'фу', 'жесть', 'ужасно',
                         'разочарован', 'печаль', 'грустно']
    
    text_lower = text.lower()
    positive_count = sum(1 for ind in positive_indicators if ind in text_lower)
    negative_count = sum(1 for ind in negative_indicators if ind in text_lower)
    
    exclamation_count = text.count('!')
    positive_count += exclamation_count * 0.5 if positive_count > negative_count else 0
    negative_count += exclamation_count * 0.5 if negative_count > positive_count else 0
    
    if positive_count > negative_count:
        return 'positive'
    elif negative_count > positive_count:
        return 'negative'
    return 'neutral'

def extract_comment_data(comment_text):
    """Извлекает данные из отдельного комментария"""
    try:
        if 'Скрыто алгоритмами Instagram' in comment_text:
            username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
            if username_match:
                return username_match.group(1).strip(), "", 0, 0
            
        username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
        if not username_match:
            return None, None, 0, 0
        
        username = username_match.group(1).strip()
        
        comment_pattern = fr"{re.escape(username)}\n(.*?)(?:\d+ нед\.)"
        comment_match = re.search(comment_pattern, comment_text, re.DOTALL)
        if comment_match:
            comment = clean_text(comment_match.group(1))
            comment = re.sub(fr'^{re.escape(username)}\s*', '', comment)
            comment = re.sub(r'^@[\w\.]+ ', '', comment)
        else:
            comment = ""
        
        week_match = re.search(r'(\d+) нед\.', comment_text)
        weeks = int(week_match.group(1)) if week_match else 0
        
        likes = 0
        likes_patterns = [
            r"(\d+) отметк[аи] \"Нравится\"",
            r"Нравится: (\d+)",
        ]
        
        for pattern in likes_patterns:
            likes_match = re.search(pattern, comment_text)
            if likes_match:
                likes = int(likes_match.group(1))
                break
        
        return username, comment.strip(), likes, weeks
    except Exception as e:
        logger.error(f"Error extracting comment data: {e}")
        return None, None, 0, 0

def analyze_post(content_type, link_to_post, post_likes, post_date, description, comment_count, all_comments):
    try:
        # Улучшенное разделение комментариев
        comments_blocks = re.split(r'(?=Фото профиля|Скрыто алгоритмами Instagram)', all_comments)
        comments_blocks = [block for block in comments_blocks if block.strip()]
        
        # Подсчет скрытых комментариев
        hidden_comments = len(re.findall(r'Скрыто алгоритмами Instagram', all_comments))
        
        usernames = []
        comments = []
        likes = []
        weeks = []
        
        total_emojis = 0
        mentions = []
        sentiments = []
        comment_lengths = []
        words_per_comment = []
        all_words = []
        user_engagement = {}
        
        # Обработка комментариев
        for block in comments_blocks:
            if 'Скрыто алгоритмами Instagram' in block:
                continue
                
            username, comment, like_count, week_number = extract_comment_data(block)
            if username and (comment is not None):
                usernames.append(username)
                comments.append(comment)
                likes.append(str(like_count))
                weeks.append(week_number)
                
                total_emojis += count_emojis(comment)
                mentions.extend(extract_mentions(comment))
                sentiment = analyze_sentiment(comment)
                sentiments.append(sentiment)
                comment_lengths.append(len(comment))
                
                words = get_comment_words(comment)
                words_per_comment.append(len(words))
                all_words.extend(words)
                
                if username not in user_engagement:
                    user_engagement[username] = {
                        'comments': 0,
                        'total_likes': 0,
                        'emoji_usage': 0,
                        'avg_length': 0,
                        'sentiments': [],
                        'weeks': []  # Добавлено для анализа временной активности
                    }
                user_stats = user_engagement[username]
                user_stats['comments'] += 1
                user_stats['total_likes'] += like_count
                user_stats['emoji_usage'] += count_emojis(comment)
                user_stats['avg_length'] += len(comment)
                user_stats['sentiments'].append(sentiment)
                user_stats['weeks'].append(week_number)
        
        # Проверка количества комментариев
        total_comments = len(comments)
        if total_comments != comment_count:
            logger.warning(f"Found {total_comments} comments, but expected {comment_count}")
            
        # Обновление статистики пользователей
        for username in user_engagement:
            stats = user_engagement[username]
            stats['avg_length'] /= stats['comments']
            stats['engagement_rate'] = stats['total_likes'] / stats['comments']
            stats['sentiment_ratio'] = sum(1 for s in stats['sentiments'] if s == 'positive') / len(stats['sentiments'])
            stats['activity_period'] = max(stats['weeks']) - min(stats['weeks']) if stats['weeks'] else 0
        
        # Расчет базовой статистики
        avg_comment_length = sum(comment_lengths) / total_comments
        sentiment_distribution = Counter(sentiments)
        most_active_users = Counter(usernames).most_common(5)
        most_mentioned = Counter(mentions).most_common(5)
        avg_likes = sum(map(int, likes)) / len(likes) if likes else 0
        earliest_week = max(weeks) if weeks else 0
        latest_week = min(weeks) if weeks else 0
        
        # Расширенная статистика
        median_comment_length = statistics.median(comment_lengths)
        avg_words_per_comment = sum(words_per_comment) / total_comments
        common_words = Counter(all_words).most_common(10)
        
        # Экспериментальная аналитика
        engagement_periods = {
            'early': [],
            'middle': [],
            'late': []
        }
        week_range = max(weeks) - min(weeks) if weeks else 0
        period_length = week_range / 3 if week_range > 0 else 1
        
        for i, week in enumerate(weeks):
            if week >= max(weeks) - period_length:
                engagement_periods['early'].append(i)
            elif week >= max(weeks) - 2 * period_length:
                engagement_periods['middle'].append(i)
            else:
                engagement_periods['late'].append(i)
        
        period_stats = {
            period: {
                'comments': len(indices),
                'avg_likes': sum(int(likes[i]) for i in indices) / len(indices) if indices else 0,
                'sentiment_ratio': sum(1 for i in indices if sentiments[i] == 'positive') / len(indices) if indices else 0
            }
            for period, indices in engagement_periods.items()
        }
        
        # Подготовка данных для CSV
        csv_data = {
            'metadata': {
                'content_type': content_type,
                'link': link_to_post,
                'post_likes': post_likes,
                'post_date': post_date,
                'total_comments': total_comments,
                'expected_comments': comment_count,
                'hidden_comments': hidden_comments
            },
            'basic_stats': {
                'avg_comment_length': avg_comment_length,
                'median_comment_length': median_comment_length,
                'avg_words': avg_words_per_comment,
                'total_emojis': total_emojis,
                'avg_likes': avg_likes
            },
            'sentiment_stats': {
                'positive': sentiment_distribution['positive'],
                'neutral': sentiment_distribution['neutral'],
                'negative': sentiment_distribution['negative']
            },
            'period_analysis': period_stats,
            'top_users': dict(most_active_users),
            'top_mentioned': dict(most_mentioned)
        }
        
        # Создаем CSV строку
        output = StringIO()
        writer = csv.writer(output)
        for section, data in csv_data.items():
            writer.writerow([section])
            for key, value in data.items():
                writer.writerow([key, value])
            writer.writerow([])
        csv_output = output.getvalue()
        
        # Формируем текстовый отчет
        analytics_summary = (
            f"CSV DATA:\n{csv_output}\n\n"
            f"ДЕТАЛЬНЫЙ АНАЛИЗ:\n"
            f"Контент: {content_type}\n"
            f"Ссылка: {link_to_post}\n\n"
            f"СТАТИСТИКА:\n"
            f"- Всего комментариев: {total_comments} (ожидалось: {comment_count})\n"
            f"- Скрытых комментариев: {hidden_comments}\n"
            f"- Всего лайков: {sum(map(int, likes))}\n"
            f"- Среднее лайков: {avg_likes:.1f}\n"
            f"- Период: {earliest_week}-{latest_week} недель\n\n"
            f"АНАЛИЗ КОНТЕНТА:\n"
            f"- Средняя длина: {avg_comment_length:.1f} символов\n"
            f"- Медиана длины: {median_comment_length} символов\n"
            f"- Среднее слов: {avg_words_per_comment:.1f}\n"
            f"- Эмодзи: {total_emojis}\n"
            f"- Тональность:\n"
            f"  * Позитив: {sentiment_distribution['positive']}\n"
            f"  * Нейтрально: {sentiment_distribution['neutral']}\n"
            f"  * Негатив: {sentiment_distribution['negative']}\n\n"
            f"ПОПУЛЯРНЫЕ СЛОВА:\n"
            + "\n".join([f"- {word}: {count}" for word, count in common_words]) + "\n\n"
            f"АКТИВНЫЕ ПОЛЬЗОВАТЕЛИ:\n"
            + "\n".join([f"- {user}: {count}" for user, count in most_active_users]) + "\n\n"
            f"УПОМИНАНИЯ:\n"
            + "\n".join([f"- {user}: {count}" for user, count in most_mentioned if user]) + "\n\n"
            f"АНАЛИЗ ПО ПЕРИОДАМ:\n"
            + "\n".join([f"- {period}: {stats['comments']} комментариев, {stats['avg_likes']:.1f} лайков/коммент, "
                        f"{stats['sentiment_ratio']*100:.1f}% позитивных"
                        for period, stats in period_stats.items()]) + "\n\n"
            f"ЭКСПЕРИМЕНТАЛЬНАЯ АНАЛИТИКА:\n"
            f"- Самый активный период: {max(period_stats.items(), key=lambda x: x[1]['comments'])[0]}\n"
            f"- Наиболее позитивный период: {max(period_stats.items(), key=lambda x: x[1]['sentiment_ratio'])[0]}\n"
            f"- Период с макс. вовлеченностью: {max(period_stats.items(), key=lambda x: x[1]['avg_likes'])[0]}"
        )
        
        return analytics_summary, "\n".join(usernames), "\n".join(comments), "\n".join(likes), str(sum(map(int, likes)))
    
    except Exception as e:
        logger.error(f"Error in analyze_post: {e}", exc_info=True)
        return f"Error: {str(e)}", "", "", "", "0"

# Создаем интерфейс Gradio
iface = gr.Interface(
    fn=analyze_post,
    inputs=[
        gr.Radio(choices=["Photo", "Video"], label="Content Type", value="Photo"),
        gr.Textbox(label="Link to Post"),
        gr.Number(label="Likes", value=0),
        gr.Textbox(label="Post Date"),
        gr.Textbox(label="Description", lines=3),
        gr.Number(label="Total Comment Count", value=0),
        gr.Textbox(label="All Comments", lines=10)
    ],
    outputs=[
        gr.Textbox(label="Analytics Summary", lines=20),
        gr.Textbox(label="Usernames"),
        gr.Textbox(label="Comments"),
        gr.Textbox(label="Likes Chronology"),
        gr.Textbox(label="Total Likes on Comments")
    ],
    title="Enhanced Instagram Comment Analyzer",
    description="Анализатор комментариев Instagram с расширенной аналитикой и CSV-форматированием"
)

if __name__ == "__main__":
    iface.launch()