File size: 14,820 Bytes
b4bbaee cbff93c e5c8ff6 282dd48 978ab36 8a11e5e cbff93c 282dd48 e5c8ff6 cbff93c 282dd48 cbff93c 282dd48 b4bbaee 282dd48 e5c8ff6 282dd48 978ab36 e5c8ff6 282dd48 8a11e5e 282dd48 8a11e5e 282dd48 8a11e5e 282dd48 e5c8ff6 282dd48 8a11e5e 282dd48 978ab36 8a11e5e 282dd48 e5c8ff6 282dd48 978ab36 282dd48 978ab36 282dd48 e5c8ff6 282dd48 978ab36 282dd48 8a11e5e 282dd48 978ab36 282dd48 8a11e5e 282dd48 8a11e5e 282dd48 978ab36 282dd48 e5c8ff6 282dd48 8a11e5e 282dd48 978ab36 8a11e5e 282dd48 8a11e5e 282dd48 8a11e5e 282dd48 8a11e5e 282dd48 978ab36 8a11e5e 282dd48 8a11e5e 978ab36 8a11e5e 978ab36 282dd48 8a11e5e 282dd48 8a11e5e 282dd48 8a11e5e 282dd48 8a11e5e cbff93c 282dd48 8a11e5e 282dd48 978ab36 282dd48 978ab36 282dd48 978ab36 282dd48 b4bbaee cbff93c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import gradio as gr
import re
from collections import Counter
from datetime import datetime
import emoji
import logging
from typing import Tuple, List, Optional
import statistics
import csv
from io import StringIO
# Настройка логирования
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def clean_text(text):
"""Очищает текст от лишних пробелов и переносов строк"""
return ' '.join(text.split())
def count_emojis(text):
"""Подсчитывает количество эмодзи в тексте"""
return len([c for c in text if c in emoji.EMOJI_DATA])
def extract_mentions(text):
"""Извлекает упоминания пользователей из текста"""
return re.findall(r'@[\w\.]+', text)
def get_comment_words(text):
"""Получает список слов из комментария для анализа"""
words = re.findall(r'\w+', text.lower())
return [w for w in words if len(w) > 2]
def analyze_sentiment(text):
"""Расширенный анализ тональности по эмодзи и ключевым словам"""
positive_indicators = ['🔥', '❤️', '👍', '😊', '💪', '👏', '🎉', '♥️', '😍', '🙏',
'круто', 'супер', 'класс', 'огонь', 'пушка', 'отлично', 'здорово',
'прекрасно', 'молодец', 'красота', 'спасибо', 'топ', 'лучший']
negative_indicators = ['👎', '😢', '😞', '😠', '😡', '💔', '😕', '😑',
'плохо', 'ужас', 'отстой', 'фу', 'жесть', 'ужасно',
'разочарован', 'печаль', 'грустно']
text_lower = text.lower()
positive_count = sum(1 for ind in positive_indicators if ind in text_lower)
negative_count = sum(1 for ind in negative_indicators if ind in text_lower)
exclamation_count = text.count('!')
positive_count += exclamation_count * 0.5 if positive_count > negative_count else 0
negative_count += exclamation_count * 0.5 if negative_count > positive_count else 0
if positive_count > negative_count:
return 'positive'
elif negative_count > positive_count:
return 'negative'
return 'neutral'
def extract_comment_data(comment_text):
"""Извлекает данные из отдельного комментария"""
try:
if 'Скрыто алгоритмами Instagram' in comment_text:
username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
if username_match:
return username_match.group(1).strip(), "", 0, 0
username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
if not username_match:
return None, None, 0, 0
username = username_match.group(1).strip()
comment_pattern = fr"{re.escape(username)}\n(.*?)(?:\d+ нед\.)"
comment_match = re.search(comment_pattern, comment_text, re.DOTALL)
if comment_match:
comment = clean_text(comment_match.group(1))
comment = re.sub(fr'^{re.escape(username)}\s*', '', comment)
comment = re.sub(r'^@[\w\.]+ ', '', comment)
else:
comment = ""
week_match = re.search(r'(\d+) нед\.', comment_text)
weeks = int(week_match.group(1)) if week_match else 0
likes = 0
likes_patterns = [
r"(\d+) отметк[аи] \"Нравится\"",
r"Нравится: (\d+)",
]
for pattern in likes_patterns:
likes_match = re.search(pattern, comment_text)
if likes_match:
likes = int(likes_match.group(1))
break
return username, comment.strip(), likes, weeks
except Exception as e:
logger.error(f"Error extracting comment data: {e}")
return None, None, 0, 0
def analyze_post(content_type, link_to_post, post_likes, post_date, description, comment_count, all_comments):
try:
# Улучшенное разделение комментариев
comments_blocks = re.split(r'(?=Фото профиля|Скрыто алгоритмами Instagram)', all_comments)
comments_blocks = [block for block in comments_blocks if block.strip()]
# Подсчет скрытых комментариев
hidden_comments = len(re.findall(r'Скрыто алгоритмами Instagram', all_comments))
usernames = []
comments = []
likes = []
weeks = []
total_emojis = 0
mentions = []
sentiments = []
comment_lengths = []
words_per_comment = []
all_words = []
user_engagement = {}
# Обработка комментариев
for block in comments_blocks:
if 'Скрыто алгоритмами Instagram' in block:
continue
username, comment, like_count, week_number = extract_comment_data(block)
if username and (comment is not None):
usernames.append(username)
comments.append(comment)
likes.append(str(like_count))
weeks.append(week_number)
total_emojis += count_emojis(comment)
mentions.extend(extract_mentions(comment))
sentiment = analyze_sentiment(comment)
sentiments.append(sentiment)
comment_lengths.append(len(comment))
words = get_comment_words(comment)
words_per_comment.append(len(words))
all_words.extend(words)
if username not in user_engagement:
user_engagement[username] = {
'comments': 0,
'total_likes': 0,
'emoji_usage': 0,
'avg_length': 0,
'sentiments': [],
'weeks': [] # Добавлено для анализа временной активности
}
user_stats = user_engagement[username]
user_stats['comments'] += 1
user_stats['total_likes'] += like_count
user_stats['emoji_usage'] += count_emojis(comment)
user_stats['avg_length'] += len(comment)
user_stats['sentiments'].append(sentiment)
user_stats['weeks'].append(week_number)
# Проверка количества комментариев
total_comments = len(comments)
if total_comments != comment_count:
logger.warning(f"Found {total_comments} comments, but expected {comment_count}")
# Обновление статистики пользователей
for username in user_engagement:
stats = user_engagement[username]
stats['avg_length'] /= stats['comments']
stats['engagement_rate'] = stats['total_likes'] / stats['comments']
stats['sentiment_ratio'] = sum(1 for s in stats['sentiments'] if s == 'positive') / len(stats['sentiments'])
stats['activity_period'] = max(stats['weeks']) - min(stats['weeks']) if stats['weeks'] else 0
# Расчет базовой статистики
avg_comment_length = sum(comment_lengths) / total_comments
sentiment_distribution = Counter(sentiments)
most_active_users = Counter(usernames).most_common(5)
most_mentioned = Counter(mentions).most_common(5)
avg_likes = sum(map(int, likes)) / len(likes) if likes else 0
earliest_week = max(weeks) if weeks else 0
latest_week = min(weeks) if weeks else 0
# Расширенная статистика
median_comment_length = statistics.median(comment_lengths)
avg_words_per_comment = sum(words_per_comment) / total_comments
common_words = Counter(all_words).most_common(10)
# Экспериментальная аналитика
engagement_periods = {
'early': [],
'middle': [],
'late': []
}
week_range = max(weeks) - min(weeks) if weeks else 0
period_length = week_range / 3 if week_range > 0 else 1
for i, week in enumerate(weeks):
if week >= max(weeks) - period_length:
engagement_periods['early'].append(i)
elif week >= max(weeks) - 2 * period_length:
engagement_periods['middle'].append(i)
else:
engagement_periods['late'].append(i)
period_stats = {
period: {
'comments': len(indices),
'avg_likes': sum(int(likes[i]) for i in indices) / len(indices) if indices else 0,
'sentiment_ratio': sum(1 for i in indices if sentiments[i] == 'positive') / len(indices) if indices else 0
}
for period, indices in engagement_periods.items()
}
# Подготовка данных для CSV
csv_data = {
'metadata': {
'content_type': content_type,
'link': link_to_post,
'post_likes': post_likes,
'post_date': post_date,
'total_comments': total_comments,
'expected_comments': comment_count,
'hidden_comments': hidden_comments
},
'basic_stats': {
'avg_comment_length': avg_comment_length,
'median_comment_length': median_comment_length,
'avg_words': avg_words_per_comment,
'total_emojis': total_emojis,
'avg_likes': avg_likes
},
'sentiment_stats': {
'positive': sentiment_distribution['positive'],
'neutral': sentiment_distribution['neutral'],
'negative': sentiment_distribution['negative']
},
'period_analysis': period_stats,
'top_users': dict(most_active_users),
'top_mentioned': dict(most_mentioned)
}
# Создаем CSV строку
output = StringIO()
writer = csv.writer(output)
for section, data in csv_data.items():
writer.writerow([section])
for key, value in data.items():
writer.writerow([key, value])
writer.writerow([])
csv_output = output.getvalue()
# Формируем текстовый отчет
analytics_summary = (
f"CSV DATA:\n{csv_output}\n\n"
f"ДЕТАЛЬНЫЙ АНАЛИЗ:\n"
f"Контент: {content_type}\n"
f"Ссылка: {link_to_post}\n\n"
f"СТАТИСТИКА:\n"
f"- Всего комментариев: {total_comments} (ожидалось: {comment_count})\n"
f"- Скрытых комментариев: {hidden_comments}\n"
f"- Всего лайков: {sum(map(int, likes))}\n"
f"- Среднее лайков: {avg_likes:.1f}\n"
f"- Период: {earliest_week}-{latest_week} недель\n\n"
f"АНАЛИЗ КОНТЕНТА:\n"
f"- Средняя длина: {avg_comment_length:.1f} символов\n"
f"- Медиана длины: {median_comment_length} символов\n"
f"- Среднее слов: {avg_words_per_comment:.1f}\n"
f"- Эмодзи: {total_emojis}\n"
f"- Тональность:\n"
f" * Позитив: {sentiment_distribution['positive']}\n"
f" * Нейтрально: {sentiment_distribution['neutral']}\n"
f" * Негатив: {sentiment_distribution['negative']}\n\n"
f"ПОПУЛЯРНЫЕ СЛОВА:\n"
+ "\n".join([f"- {word}: {count}" for word, count in common_words]) + "\n\n"
f"АКТИВНЫЕ ПОЛЬЗОВАТЕЛИ:\n"
+ "\n".join([f"- {user}: {count}" for user, count in most_active_users]) + "\n\n"
f"УПОМИНАНИЯ:\n"
+ "\n".join([f"- {user}: {count}" for user, count in most_mentioned if user]) + "\n\n"
f"АНАЛИЗ ПО ПЕРИОДАМ:\n"
+ "\n".join([f"- {period}: {stats['comments']} комментариев, {stats['avg_likes']:.1f} лайков/коммент, "
f"{stats['sentiment_ratio']*100:.1f}% позитивных"
for period, stats in period_stats.items()]) + "\n\n"
f"ЭКСПЕРИМЕНТАЛЬНАЯ АНАЛИТИКА:\n"
f"- Самый активный период: {max(period_stats.items(), key=lambda x: x[1]['comments'])[0]}\n"
f"- Наиболее позитивный период: {max(period_stats.items(), key=lambda x: x[1]['sentiment_ratio'])[0]}\n"
f"- Период с макс. вовлеченностью: {max(period_stats.items(), key=lambda x: x[1]['avg_likes'])[0]}"
)
return analytics_summary, "\n".join(usernames), "\n".join(comments), "\n".join(likes), str(sum(map(int, likes)))
except Exception as e:
logger.error(f"Error in analyze_post: {e}", exc_info=True)
return f"Error: {str(e)}", "", "", "", "0"
# Создаем интерфейс Gradio
iface = gr.Interface(
fn=analyze_post,
inputs=[
gr.Radio(choices=["Photo", "Video"], label="Content Type", value="Photo"),
gr.Textbox(label="Link to Post"),
gr.Number(label="Likes", value=0),
gr.Textbox(label="Post Date"),
gr.Textbox(label="Description", lines=3),
gr.Number(label="Total Comment Count", value=0),
gr.Textbox(label="All Comments", lines=10)
],
outputs=[
gr.Textbox(label="Analytics Summary", lines=20),
gr.Textbox(label="Usernames"),
gr.Textbox(label="Comments"),
gr.Textbox(label="Likes Chronology"),
gr.Textbox(label="Total Likes on Comments")
],
title="Enhanced Instagram Comment Analyzer",
description="Анализатор комментариев Instagram с расширенной аналитикой и CSV-форматированием"
)
if __name__ == "__main__":
iface.launch() |