new-space / app.py
boompack's picture
Update app.py
8a11e5e verified
raw
history blame
14.8 kB
import gradio as gr
import re
from collections import Counter
from datetime import datetime
import emoji
import logging
from typing import Tuple, List, Optional
import statistics
import csv
from io import StringIO
# Настройка логирования
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def clean_text(text):
"""Очищает текст от лишних пробелов и переносов строк"""
return ' '.join(text.split())
def count_emojis(text):
"""Подсчитывает количество эмодзи в тексте"""
return len([c for c in text if c in emoji.EMOJI_DATA])
def extract_mentions(text):
"""Извлекает упоминания пользователей из текста"""
return re.findall(r'@[\w\.]+', text)
def get_comment_words(text):
"""Получает список слов из комментария для анализа"""
words = re.findall(r'\w+', text.lower())
return [w for w in words if len(w) > 2]
def analyze_sentiment(text):
"""Расширенный анализ тональности по эмодзи и ключевым словам"""
positive_indicators = ['🔥', '❤️', '👍', '😊', '💪', '👏', '🎉', '♥️', '😍', '🙏',
'круто', 'супер', 'класс', 'огонь', 'пушка', 'отлично', 'здорово',
'прекрасно', 'молодец', 'красота', 'спасибо', 'топ', 'лучший']
negative_indicators = ['👎', '😢', '😞', '😠', '😡', '💔', '😕', '😑',
'плохо', 'ужас', 'отстой', 'фу', 'жесть', 'ужасно',
'разочарован', 'печаль', 'грустно']
text_lower = text.lower()
positive_count = sum(1 for ind in positive_indicators if ind in text_lower)
negative_count = sum(1 for ind in negative_indicators if ind in text_lower)
exclamation_count = text.count('!')
positive_count += exclamation_count * 0.5 if positive_count > negative_count else 0
negative_count += exclamation_count * 0.5 if negative_count > positive_count else 0
if positive_count > negative_count:
return 'positive'
elif negative_count > positive_count:
return 'negative'
return 'neutral'
def extract_comment_data(comment_text):
"""Извлекает данные из отдельного комментария"""
try:
if 'Скрыто алгоритмами Instagram' in comment_text:
username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
if username_match:
return username_match.group(1).strip(), "", 0, 0
username_match = re.search(r"Фото профиля ([^\n]+)", comment_text)
if not username_match:
return None, None, 0, 0
username = username_match.group(1).strip()
comment_pattern = fr"{re.escape(username)}\n(.*?)(?:\d+ нед\.)"
comment_match = re.search(comment_pattern, comment_text, re.DOTALL)
if comment_match:
comment = clean_text(comment_match.group(1))
comment = re.sub(fr'^{re.escape(username)}\s*', '', comment)
comment = re.sub(r'^@[\w\.]+ ', '', comment)
else:
comment = ""
week_match = re.search(r'(\d+) нед\.', comment_text)
weeks = int(week_match.group(1)) if week_match else 0
likes = 0
likes_patterns = [
r"(\d+) отметк[аи] \"Нравится\"",
r"Нравится: (\d+)",
]
for pattern in likes_patterns:
likes_match = re.search(pattern, comment_text)
if likes_match:
likes = int(likes_match.group(1))
break
return username, comment.strip(), likes, weeks
except Exception as e:
logger.error(f"Error extracting comment data: {e}")
return None, None, 0, 0
def analyze_post(content_type, link_to_post, post_likes, post_date, description, comment_count, all_comments):
try:
# Улучшенное разделение комментариев
comments_blocks = re.split(r'(?=Фото профиля|Скрыто алгоритмами Instagram)', all_comments)
comments_blocks = [block for block in comments_blocks if block.strip()]
# Подсчет скрытых комментариев
hidden_comments = len(re.findall(r'Скрыто алгоритмами Instagram', all_comments))
usernames = []
comments = []
likes = []
weeks = []
total_emojis = 0
mentions = []
sentiments = []
comment_lengths = []
words_per_comment = []
all_words = []
user_engagement = {}
# Обработка комментариев
for block in comments_blocks:
if 'Скрыто алгоритмами Instagram' in block:
continue
username, comment, like_count, week_number = extract_comment_data(block)
if username and (comment is not None):
usernames.append(username)
comments.append(comment)
likes.append(str(like_count))
weeks.append(week_number)
total_emojis += count_emojis(comment)
mentions.extend(extract_mentions(comment))
sentiment = analyze_sentiment(comment)
sentiments.append(sentiment)
comment_lengths.append(len(comment))
words = get_comment_words(comment)
words_per_comment.append(len(words))
all_words.extend(words)
if username not in user_engagement:
user_engagement[username] = {
'comments': 0,
'total_likes': 0,
'emoji_usage': 0,
'avg_length': 0,
'sentiments': [],
'weeks': [] # Добавлено для анализа временной активности
}
user_stats = user_engagement[username]
user_stats['comments'] += 1
user_stats['total_likes'] += like_count
user_stats['emoji_usage'] += count_emojis(comment)
user_stats['avg_length'] += len(comment)
user_stats['sentiments'].append(sentiment)
user_stats['weeks'].append(week_number)
# Проверка количества комментариев
total_comments = len(comments)
if total_comments != comment_count:
logger.warning(f"Found {total_comments} comments, but expected {comment_count}")
# Обновление статистики пользователей
for username in user_engagement:
stats = user_engagement[username]
stats['avg_length'] /= stats['comments']
stats['engagement_rate'] = stats['total_likes'] / stats['comments']
stats['sentiment_ratio'] = sum(1 for s in stats['sentiments'] if s == 'positive') / len(stats['sentiments'])
stats['activity_period'] = max(stats['weeks']) - min(stats['weeks']) if stats['weeks'] else 0
# Расчет базовой статистики
avg_comment_length = sum(comment_lengths) / total_comments
sentiment_distribution = Counter(sentiments)
most_active_users = Counter(usernames).most_common(5)
most_mentioned = Counter(mentions).most_common(5)
avg_likes = sum(map(int, likes)) / len(likes) if likes else 0
earliest_week = max(weeks) if weeks else 0
latest_week = min(weeks) if weeks else 0
# Расширенная статистика
median_comment_length = statistics.median(comment_lengths)
avg_words_per_comment = sum(words_per_comment) / total_comments
common_words = Counter(all_words).most_common(10)
# Экспериментальная аналитика
engagement_periods = {
'early': [],
'middle': [],
'late': []
}
week_range = max(weeks) - min(weeks) if weeks else 0
period_length = week_range / 3 if week_range > 0 else 1
for i, week in enumerate(weeks):
if week >= max(weeks) - period_length:
engagement_periods['early'].append(i)
elif week >= max(weeks) - 2 * period_length:
engagement_periods['middle'].append(i)
else:
engagement_periods['late'].append(i)
period_stats = {
period: {
'comments': len(indices),
'avg_likes': sum(int(likes[i]) for i in indices) / len(indices) if indices else 0,
'sentiment_ratio': sum(1 for i in indices if sentiments[i] == 'positive') / len(indices) if indices else 0
}
for period, indices in engagement_periods.items()
}
# Подготовка данных для CSV
csv_data = {
'metadata': {
'content_type': content_type,
'link': link_to_post,
'post_likes': post_likes,
'post_date': post_date,
'total_comments': total_comments,
'expected_comments': comment_count,
'hidden_comments': hidden_comments
},
'basic_stats': {
'avg_comment_length': avg_comment_length,
'median_comment_length': median_comment_length,
'avg_words': avg_words_per_comment,
'total_emojis': total_emojis,
'avg_likes': avg_likes
},
'sentiment_stats': {
'positive': sentiment_distribution['positive'],
'neutral': sentiment_distribution['neutral'],
'negative': sentiment_distribution['negative']
},
'period_analysis': period_stats,
'top_users': dict(most_active_users),
'top_mentioned': dict(most_mentioned)
}
# Создаем CSV строку
output = StringIO()
writer = csv.writer(output)
for section, data in csv_data.items():
writer.writerow([section])
for key, value in data.items():
writer.writerow([key, value])
writer.writerow([])
csv_output = output.getvalue()
# Формируем текстовый отчет
analytics_summary = (
f"CSV DATA:\n{csv_output}\n\n"
f"ДЕТАЛЬНЫЙ АНАЛИЗ:\n"
f"Контент: {content_type}\n"
f"Ссылка: {link_to_post}\n\n"
f"СТАТИСТИКА:\n"
f"- Всего комментариев: {total_comments} (ожидалось: {comment_count})\n"
f"- Скрытых комментариев: {hidden_comments}\n"
f"- Всего лайков: {sum(map(int, likes))}\n"
f"- Среднее лайков: {avg_likes:.1f}\n"
f"- Период: {earliest_week}-{latest_week} недель\n\n"
f"АНАЛИЗ КОНТЕНТА:\n"
f"- Средняя длина: {avg_comment_length:.1f} символов\n"
f"- Медиана длины: {median_comment_length} символов\n"
f"- Среднее слов: {avg_words_per_comment:.1f}\n"
f"- Эмодзи: {total_emojis}\n"
f"- Тональность:\n"
f" * Позитив: {sentiment_distribution['positive']}\n"
f" * Нейтрально: {sentiment_distribution['neutral']}\n"
f" * Негатив: {sentiment_distribution['negative']}\n\n"
f"ПОПУЛЯРНЫЕ СЛОВА:\n"
+ "\n".join([f"- {word}: {count}" for word, count in common_words]) + "\n\n"
f"АКТИВНЫЕ ПОЛЬЗОВАТЕЛИ:\n"
+ "\n".join([f"- {user}: {count}" for user, count in most_active_users]) + "\n\n"
f"УПОМИНАНИЯ:\n"
+ "\n".join([f"- {user}: {count}" for user, count in most_mentioned if user]) + "\n\n"
f"АНАЛИЗ ПО ПЕРИОДАМ:\n"
+ "\n".join([f"- {period}: {stats['comments']} комментариев, {stats['avg_likes']:.1f} лайков/коммент, "
f"{stats['sentiment_ratio']*100:.1f}% позитивных"
for period, stats in period_stats.items()]) + "\n\n"
f"ЭКСПЕРИМЕНТАЛЬНАЯ АНАЛИТИКА:\n"
f"- Самый активный период: {max(period_stats.items(), key=lambda x: x[1]['comments'])[0]}\n"
f"- Наиболее позитивный период: {max(period_stats.items(), key=lambda x: x[1]['sentiment_ratio'])[0]}\n"
f"- Период с макс. вовлеченностью: {max(period_stats.items(), key=lambda x: x[1]['avg_likes'])[0]}"
)
return analytics_summary, "\n".join(usernames), "\n".join(comments), "\n".join(likes), str(sum(map(int, likes)))
except Exception as e:
logger.error(f"Error in analyze_post: {e}", exc_info=True)
return f"Error: {str(e)}", "", "", "", "0"
# Создаем интерфейс Gradio
iface = gr.Interface(
fn=analyze_post,
inputs=[
gr.Radio(choices=["Photo", "Video"], label="Content Type", value="Photo"),
gr.Textbox(label="Link to Post"),
gr.Number(label="Likes", value=0),
gr.Textbox(label="Post Date"),
gr.Textbox(label="Description", lines=3),
gr.Number(label="Total Comment Count", value=0),
gr.Textbox(label="All Comments", lines=10)
],
outputs=[
gr.Textbox(label="Analytics Summary", lines=20),
gr.Textbox(label="Usernames"),
gr.Textbox(label="Comments"),
gr.Textbox(label="Likes Chronology"),
gr.Textbox(label="Total Likes on Comments")
],
title="Enhanced Instagram Comment Analyzer",
description="Анализатор комментариев Instagram с расширенной аналитикой и CSV-форматированием"
)
if __name__ == "__main__":
iface.launch()