tomhodan commited on
Commit
ae4c1e1
·
verified ·
1 Parent(s): 367db65

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -45
README.md CHANGED
@@ -15,18 +15,16 @@ configs:
15
  # BOP: Benchmark for 6D Object Pose Estimation
16
  The goal of BOP is to capture the state of the art in estimating the 6D pose, i.e. 3D translation and 3D rotation, of rigid objects from RGB/RGB-D images. An accurate, fast, robust, scalable and easy-to-train method that solves this task will have a big impact in application fields such as robotics or augmented reality.
17
 
18
- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/637fb712084fca81acde6e40/8WSyi9CNNsfDHC-lwaRpG.jpeg)
19
-
20
  Homepage: https://bop.felk.cvut.cz/home/
21
 
22
- Toolkit: https://github.com/thodan/bop_toolkit
23
 
24
  ## Downloading datasets
25
 
26
- #### Option 1: Using `huggingface_hub`:
27
-
28
  <details><summary>Click to expand</summary>
29
 
 
 
30
  a. Install the library:
31
  ```
32
  pip install --upgrade huggingface_hub
@@ -45,13 +43,9 @@ snapshot_download(repo_id="bop-benchmark/datasets",
45
  ```
46
  If you want to download the entire BOP datasets (~3TB), please remove the `allow_patterns` argument. More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/main/en/guides/download).
47
 
48
- </details>
49
-
50
 
51
  #### Option 2: Using `huggingface_hub[cli]`:
52
 
53
- <details><summary>Click to expand</summary>
54
-
55
  a. Install the library:
56
  ```
57
  pip install -U "huggingface_hub[cli]"
@@ -64,12 +58,9 @@ export DATASET_NAME=hope
64
  huggingface-cli download bop-benchmark/datasets --include "$DATASET_NAME/*.zip" --local-dir $LOCAL_DIR --repo-type=dataset
65
  ```
66
  Please remove this argument `--include "$DATASET_NAME/*.zip"` to download entire BOP datasets (~3TB). More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/main/en/guides/download).
67
- </details>
68
 
69
  #### Option 3: Using `wget`:
70
 
71
- <details><summary>Click to expand</summary>
72
-
73
  Similar `wget` command as in [BOP website](https://bop.felk.cvut.cz/datasets/) can be used to download the dataset from huggingface hub:
74
  ```
75
  export SRC=https://huggingface.co/datasets/bop-benchmark/datasets/resolve/main
@@ -79,7 +70,6 @@ wget $SRC/lm/lm_models.zip # 3D object models
79
  wget $SRC/lm/lm_test_all.zip # All test images ("_bop19" for a subset)
80
  wget $SRC/lm/lm_train_pbr.zip # PBR training images
81
  ```
82
- </details>
83
 
84
  Datasets are stored in `.zip` format. You can extract them using the following command:
85
  ```
@@ -92,16 +82,18 @@ pip install huggingface_hub[hf_transfer]
92
  export HF_HUB_ENABLE_HF_TRANSFER=1
93
  ```
94
 
 
 
95
  ## Uploading datasets
96
 
 
 
97
  You create a new dataset and want to share it with BOP community. Here is a step-by-step guide to upload the dataset and create a pull request to [our huggingface hub](https://huggingface.co/datasets/bop-benchmark/datasets/). Feel free to reach out to [email protected] if you have any questions.
98
 
99
  Similar to the download process, you can upload the dataset using the `huggingface_hub` library or `huggingface_hub[cli]`. We recommend using `huggingface_hub[cli]` for its simplicity.
100
 
101
  #### Option 1: Using `huggingface_hub[cli]`:
102
 
103
- <details><summary>Click to expand</summary>
104
-
105
  a. Install the library:
106
  ```
107
  pip install -U "huggingface_hub[cli]"
@@ -135,12 +127,8 @@ export HF_FOLDER=/hope
135
  huggingface-cli upload bop-benchmark/datasets $LOCAL_FOLDER $HF_FOLDER --repo-type=dataset --create-pr
136
  ```
137
 
138
- </details>
139
-
140
  #### Option 2: Using `huggingface_hub`:
141
 
142
- <details><summary>Click to expand</summary>
143
-
144
  a. Install the library:
145
  ```
146
  pip install --upgrade huggingface_hub
@@ -175,10 +163,10 @@ api.create_commit(repo_id="bop-benchmark/datasets",
175
  ```
176
  If your dataset is large (> 500 GB), you can upload it in chunks by adding the `multi_commits=True, multi_commits_verbose=True,` argument. More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/package_reference/hf_api#huggingface_hub.HfApi.create_pull_request).
177
 
178
- </details>
179
-
180
  ## FAQ
181
 
 
 
182
  #### 1. How to upload a large file > 50 GB?
183
  Note that HuggingFace limits the size of each file to 50 GB. If your dataset is larger, you can split it into smaller files:
184
  ```
@@ -198,27 +186,4 @@ If you are running on a machine with high bandwidth, you can increase your downl
198
  pip install huggingface_hub[hf_transfer]
199
  export HF_HUB_ENABLE_HF_TRANSFER=1
200
  ```
201
-
202
- ## Publications
203
- - [**BOP Challenge 2023 on Detection, Segmentation and Pose Estimation of Seen and Unseen Rigid Objects**](https://arxiv.org/pdf/2403.09799.pdf)
204
- - T. Hodaň, M. Sundermeyer, Y. Labbé, V. N. Nguyen, G. Wang, E. Brachmann, B. Drost, V. Lepetit, C. Rother, J. Matas
205
- - IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW, [CV4MR workshop](https://cv4mr.github.io/)) 2024, Seattle
206
- - [PDF](https://arxiv.org/pdf/2403.09799.pdf), [SLIDES](https://cmp.felk.cvut.cz/sixd/workshop_2023/slides/bop_challenge_2023_results.pdf), [VIDEO](https://www.youtube.com/watch?v=PcDszFANcDQ), [BIB](https://cmp.felk.cvut.cz/~hodanto2/data/hodan2023bop.bib)
207
-
208
- - [**BOP Challenge 2022 on Detection, Segmentation and Pose Estimation of Specific Rigid Objects**](https://arxiv.org/pdf/2302.13075.pdf)
209
- - M. Sundermeyer, T. Hodaň, Y. Labbé, G. Wang, E. Brachmann, B. Drost, C. Rother, J. Matas
210
- - IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW, [CV4MR workshop](https://cv4mr.github.io/)) 2023, Vancouver
211
- - [PDF](https://arxiv.org/pdf/2302.13075.pdf), [SLIDES](https://cmp.felk.cvut.cz/sixd/workshop_2022/slides/bop_challenge_2022_results.pdf), [VIDEO 1](https://vimeo.com/showcase/9946695/video/768457697), [VIDEO 2](https://vimeo.com/showcase/9946695/video/768458355), [BIB](https://cmp.felk.cvut.cz/~hodanto2/data/sundermeyer2022bop.bib)
212
-
213
- - [**BOP Challenge 2020 on 6D Object Localization**](https://arxiv.org/pdf/2009.07378.pdf)
214
- - T. Hodaň, M. Sundermeyer, B. Drost, Y. Labbé, E. Brachmann, F. Michel, C. Rother, J. Matas
215
- - European Conference on Computer Vision Workshops (ECCVW) 2020, Glasgow
216
- - [PDF](https://arxiv.org/pdf/2009.07378.pdf), [SLIDES](https://bop.felk.cvut.cz/media/bop_challenge_2020_results.pdf), [BIB](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2020bop.bib)
217
-
218
- - [**BOP: Benchmark for 6D Object Pose Estimation**](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop.pdf)
219
- - T. Hodaň, F. Michel, E. Brachmann, W. Kehl, A. G. Buch, D. Kraft, B. Drost, J. Vidal, S. Ihrke, X. Zabulis, C. Sahin, F. Manhardt, F. Tombari, T.-K. Kim, J. Matas, C. Rother
220
- - European Conference on Computer Vision (ECCV) 2018, Munich
221
- - [PDF](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop.pdf), [SLIDES](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop_slides_eccv.pdf), [POSTER](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop_poster.pdf), [BIB](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop.bib)
222
-
223
-
224
- The online evaluation system has been developed by [T. Hodaň](http://www.hodan.xyz) and [A. Melenovský](https://www.linkedin.com/in/anton%C3%ADn-melenovsk%C3%BD-09907b151/).
 
15
  # BOP: Benchmark for 6D Object Pose Estimation
16
  The goal of BOP is to capture the state of the art in estimating the 6D pose, i.e. 3D translation and 3D rotation, of rigid objects from RGB/RGB-D images. An accurate, fast, robust, scalable and easy-to-train method that solves this task will have a big impact in application fields such as robotics or augmented reality.
17
 
 
 
18
  Homepage: https://bop.felk.cvut.cz/home/
19
 
20
+ BOP Toolkit: https://github.com/thodan/bop_toolkit
21
 
22
  ## Downloading datasets
23
 
 
 
24
  <details><summary>Click to expand</summary>
25
 
26
+ #### Option 1: Using `huggingface_hub`:
27
+
28
  a. Install the library:
29
  ```
30
  pip install --upgrade huggingface_hub
 
43
  ```
44
  If you want to download the entire BOP datasets (~3TB), please remove the `allow_patterns` argument. More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/main/en/guides/download).
45
 
 
 
46
 
47
  #### Option 2: Using `huggingface_hub[cli]`:
48
 
 
 
49
  a. Install the library:
50
  ```
51
  pip install -U "huggingface_hub[cli]"
 
58
  huggingface-cli download bop-benchmark/datasets --include "$DATASET_NAME/*.zip" --local-dir $LOCAL_DIR --repo-type=dataset
59
  ```
60
  Please remove this argument `--include "$DATASET_NAME/*.zip"` to download entire BOP datasets (~3TB). More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/main/en/guides/download).
 
61
 
62
  #### Option 3: Using `wget`:
63
 
 
 
64
  Similar `wget` command as in [BOP website](https://bop.felk.cvut.cz/datasets/) can be used to download the dataset from huggingface hub:
65
  ```
66
  export SRC=https://huggingface.co/datasets/bop-benchmark/datasets/resolve/main
 
70
  wget $SRC/lm/lm_test_all.zip # All test images ("_bop19" for a subset)
71
  wget $SRC/lm/lm_train_pbr.zip # PBR training images
72
  ```
 
73
 
74
  Datasets are stored in `.zip` format. You can extract them using the following command:
75
  ```
 
82
  export HF_HUB_ENABLE_HF_TRANSFER=1
83
  ```
84
 
85
+ </details>
86
+
87
  ## Uploading datasets
88
 
89
+ <details><summary>Click to expand</summary>
90
+
91
  You create a new dataset and want to share it with BOP community. Here is a step-by-step guide to upload the dataset and create a pull request to [our huggingface hub](https://huggingface.co/datasets/bop-benchmark/datasets/). Feel free to reach out to [email protected] if you have any questions.
92
 
93
  Similar to the download process, you can upload the dataset using the `huggingface_hub` library or `huggingface_hub[cli]`. We recommend using `huggingface_hub[cli]` for its simplicity.
94
 
95
  #### Option 1: Using `huggingface_hub[cli]`:
96
 
 
 
97
  a. Install the library:
98
  ```
99
  pip install -U "huggingface_hub[cli]"
 
127
  huggingface-cli upload bop-benchmark/datasets $LOCAL_FOLDER $HF_FOLDER --repo-type=dataset --create-pr
128
  ```
129
 
 
 
130
  #### Option 2: Using `huggingface_hub`:
131
 
 
 
132
  a. Install the library:
133
  ```
134
  pip install --upgrade huggingface_hub
 
163
  ```
164
  If your dataset is large (> 500 GB), you can upload it in chunks by adding the `multi_commits=True, multi_commits_verbose=True,` argument. More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/package_reference/hf_api#huggingface_hub.HfApi.create_pull_request).
165
 
 
 
166
  ## FAQ
167
 
168
+ <details><summary>Click to expand</summary>
169
+
170
  #### 1. How to upload a large file > 50 GB?
171
  Note that HuggingFace limits the size of each file to 50 GB. If your dataset is larger, you can split it into smaller files:
172
  ```
 
186
  pip install huggingface_hub[hf_transfer]
187
  export HF_HUB_ENABLE_HF_TRANSFER=1
188
  ```
189
+ </details>