Spaces:
Configuration error
Configuration error
Update README.md
Browse files
README.md
CHANGED
@@ -15,18 +15,16 @@ configs:
|
|
15 |
# BOP: Benchmark for 6D Object Pose Estimation
|
16 |
The goal of BOP is to capture the state of the art in estimating the 6D pose, i.e. 3D translation and 3D rotation, of rigid objects from RGB/RGB-D images. An accurate, fast, robust, scalable and easy-to-train method that solves this task will have a big impact in application fields such as robotics or augmented reality.
|
17 |
|
18 |
-

|
19 |
-
|
20 |
Homepage: https://bop.felk.cvut.cz/home/
|
21 |
|
22 |
-
Toolkit: https://github.com/thodan/bop_toolkit
|
23 |
|
24 |
## Downloading datasets
|
25 |
|
26 |
-
#### Option 1: Using `huggingface_hub`:
|
27 |
-
|
28 |
<details><summary>Click to expand</summary>
|
29 |
|
|
|
|
|
30 |
a. Install the library:
|
31 |
```
|
32 |
pip install --upgrade huggingface_hub
|
@@ -45,13 +43,9 @@ snapshot_download(repo_id="bop-benchmark/datasets",
|
|
45 |
```
|
46 |
If you want to download the entire BOP datasets (~3TB), please remove the `allow_patterns` argument. More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/main/en/guides/download).
|
47 |
|
48 |
-
</details>
|
49 |
-
|
50 |
|
51 |
#### Option 2: Using `huggingface_hub[cli]`:
|
52 |
|
53 |
-
<details><summary>Click to expand</summary>
|
54 |
-
|
55 |
a. Install the library:
|
56 |
```
|
57 |
pip install -U "huggingface_hub[cli]"
|
@@ -64,12 +58,9 @@ export DATASET_NAME=hope
|
|
64 |
huggingface-cli download bop-benchmark/datasets --include "$DATASET_NAME/*.zip" --local-dir $LOCAL_DIR --repo-type=dataset
|
65 |
```
|
66 |
Please remove this argument `--include "$DATASET_NAME/*.zip"` to download entire BOP datasets (~3TB). More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/main/en/guides/download).
|
67 |
-
</details>
|
68 |
|
69 |
#### Option 3: Using `wget`:
|
70 |
|
71 |
-
<details><summary>Click to expand</summary>
|
72 |
-
|
73 |
Similar `wget` command as in [BOP website](https://bop.felk.cvut.cz/datasets/) can be used to download the dataset from huggingface hub:
|
74 |
```
|
75 |
export SRC=https://huggingface.co/datasets/bop-benchmark/datasets/resolve/main
|
@@ -79,7 +70,6 @@ wget $SRC/lm/lm_models.zip # 3D object models
|
|
79 |
wget $SRC/lm/lm_test_all.zip # All test images ("_bop19" for a subset)
|
80 |
wget $SRC/lm/lm_train_pbr.zip # PBR training images
|
81 |
```
|
82 |
-
</details>
|
83 |
|
84 |
Datasets are stored in `.zip` format. You can extract them using the following command:
|
85 |
```
|
@@ -92,16 +82,18 @@ pip install huggingface_hub[hf_transfer]
|
|
92 |
export HF_HUB_ENABLE_HF_TRANSFER=1
|
93 |
```
|
94 |
|
|
|
|
|
95 |
## Uploading datasets
|
96 |
|
|
|
|
|
97 |
You create a new dataset and want to share it with BOP community. Here is a step-by-step guide to upload the dataset and create a pull request to [our huggingface hub](https://huggingface.co/datasets/bop-benchmark/datasets/). Feel free to reach out to [email protected] if you have any questions.
|
98 |
|
99 |
Similar to the download process, you can upload the dataset using the `huggingface_hub` library or `huggingface_hub[cli]`. We recommend using `huggingface_hub[cli]` for its simplicity.
|
100 |
|
101 |
#### Option 1: Using `huggingface_hub[cli]`:
|
102 |
|
103 |
-
<details><summary>Click to expand</summary>
|
104 |
-
|
105 |
a. Install the library:
|
106 |
```
|
107 |
pip install -U "huggingface_hub[cli]"
|
@@ -135,12 +127,8 @@ export HF_FOLDER=/hope
|
|
135 |
huggingface-cli upload bop-benchmark/datasets $LOCAL_FOLDER $HF_FOLDER --repo-type=dataset --create-pr
|
136 |
```
|
137 |
|
138 |
-
</details>
|
139 |
-
|
140 |
#### Option 2: Using `huggingface_hub`:
|
141 |
|
142 |
-
<details><summary>Click to expand</summary>
|
143 |
-
|
144 |
a. Install the library:
|
145 |
```
|
146 |
pip install --upgrade huggingface_hub
|
@@ -175,10 +163,10 @@ api.create_commit(repo_id="bop-benchmark/datasets",
|
|
175 |
```
|
176 |
If your dataset is large (> 500 GB), you can upload it in chunks by adding the `multi_commits=True, multi_commits_verbose=True,` argument. More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/package_reference/hf_api#huggingface_hub.HfApi.create_pull_request).
|
177 |
|
178 |
-
</details>
|
179 |
-
|
180 |
## FAQ
|
181 |
|
|
|
|
|
182 |
#### 1. How to upload a large file > 50 GB?
|
183 |
Note that HuggingFace limits the size of each file to 50 GB. If your dataset is larger, you can split it into smaller files:
|
184 |
```
|
@@ -198,27 +186,4 @@ If you are running on a machine with high bandwidth, you can increase your downl
|
|
198 |
pip install huggingface_hub[hf_transfer]
|
199 |
export HF_HUB_ENABLE_HF_TRANSFER=1
|
200 |
```
|
201 |
-
|
202 |
-
## Publications
|
203 |
-
- [**BOP Challenge 2023 on Detection, Segmentation and Pose Estimation of Seen and Unseen Rigid Objects**](https://arxiv.org/pdf/2403.09799.pdf)
|
204 |
-
- T. Hodaň, M. Sundermeyer, Y. Labbé, V. N. Nguyen, G. Wang, E. Brachmann, B. Drost, V. Lepetit, C. Rother, J. Matas
|
205 |
-
- IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW, [CV4MR workshop](https://cv4mr.github.io/)) 2024, Seattle
|
206 |
-
- [PDF](https://arxiv.org/pdf/2403.09799.pdf), [SLIDES](https://cmp.felk.cvut.cz/sixd/workshop_2023/slides/bop_challenge_2023_results.pdf), [VIDEO](https://www.youtube.com/watch?v=PcDszFANcDQ), [BIB](https://cmp.felk.cvut.cz/~hodanto2/data/hodan2023bop.bib)
|
207 |
-
|
208 |
-
- [**BOP Challenge 2022 on Detection, Segmentation and Pose Estimation of Specific Rigid Objects**](https://arxiv.org/pdf/2302.13075.pdf)
|
209 |
-
- M. Sundermeyer, T. Hodaň, Y. Labbé, G. Wang, E. Brachmann, B. Drost, C. Rother, J. Matas
|
210 |
-
- IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW, [CV4MR workshop](https://cv4mr.github.io/)) 2023, Vancouver
|
211 |
-
- [PDF](https://arxiv.org/pdf/2302.13075.pdf), [SLIDES](https://cmp.felk.cvut.cz/sixd/workshop_2022/slides/bop_challenge_2022_results.pdf), [VIDEO 1](https://vimeo.com/showcase/9946695/video/768457697), [VIDEO 2](https://vimeo.com/showcase/9946695/video/768458355), [BIB](https://cmp.felk.cvut.cz/~hodanto2/data/sundermeyer2022bop.bib)
|
212 |
-
|
213 |
-
- [**BOP Challenge 2020 on 6D Object Localization**](https://arxiv.org/pdf/2009.07378.pdf)
|
214 |
-
- T. Hodaň, M. Sundermeyer, B. Drost, Y. Labbé, E. Brachmann, F. Michel, C. Rother, J. Matas
|
215 |
-
- European Conference on Computer Vision Workshops (ECCVW) 2020, Glasgow
|
216 |
-
- [PDF](https://arxiv.org/pdf/2009.07378.pdf), [SLIDES](https://bop.felk.cvut.cz/media/bop_challenge_2020_results.pdf), [BIB](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2020bop.bib)
|
217 |
-
|
218 |
-
- [**BOP: Benchmark for 6D Object Pose Estimation**](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop.pdf)
|
219 |
-
- T. Hodaň, F. Michel, E. Brachmann, W. Kehl, A. G. Buch, D. Kraft, B. Drost, J. Vidal, S. Ihrke, X. Zabulis, C. Sahin, F. Manhardt, F. Tombari, T.-K. Kim, J. Matas, C. Rother
|
220 |
-
- European Conference on Computer Vision (ECCV) 2018, Munich
|
221 |
-
- [PDF](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop.pdf), [SLIDES](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop_slides_eccv.pdf), [POSTER](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop_poster.pdf), [BIB](http://cmp.felk.cvut.cz/~hodanto2/data/hodan2018bop.bib)
|
222 |
-
|
223 |
-
|
224 |
-
The online evaluation system has been developed by [T. Hodaň](http://www.hodan.xyz) and [A. Melenovský](https://www.linkedin.com/in/anton%C3%ADn-melenovsk%C3%BD-09907b151/).
|
|
|
15 |
# BOP: Benchmark for 6D Object Pose Estimation
|
16 |
The goal of BOP is to capture the state of the art in estimating the 6D pose, i.e. 3D translation and 3D rotation, of rigid objects from RGB/RGB-D images. An accurate, fast, robust, scalable and easy-to-train method that solves this task will have a big impact in application fields such as robotics or augmented reality.
|
17 |
|
|
|
|
|
18 |
Homepage: https://bop.felk.cvut.cz/home/
|
19 |
|
20 |
+
BOP Toolkit: https://github.com/thodan/bop_toolkit
|
21 |
|
22 |
## Downloading datasets
|
23 |
|
|
|
|
|
24 |
<details><summary>Click to expand</summary>
|
25 |
|
26 |
+
#### Option 1: Using `huggingface_hub`:
|
27 |
+
|
28 |
a. Install the library:
|
29 |
```
|
30 |
pip install --upgrade huggingface_hub
|
|
|
43 |
```
|
44 |
If you want to download the entire BOP datasets (~3TB), please remove the `allow_patterns` argument. More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/main/en/guides/download).
|
45 |
|
|
|
|
|
46 |
|
47 |
#### Option 2: Using `huggingface_hub[cli]`:
|
48 |
|
|
|
|
|
49 |
a. Install the library:
|
50 |
```
|
51 |
pip install -U "huggingface_hub[cli]"
|
|
|
58 |
huggingface-cli download bop-benchmark/datasets --include "$DATASET_NAME/*.zip" --local-dir $LOCAL_DIR --repo-type=dataset
|
59 |
```
|
60 |
Please remove this argument `--include "$DATASET_NAME/*.zip"` to download entire BOP datasets (~3TB). More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/main/en/guides/download).
|
|
|
61 |
|
62 |
#### Option 3: Using `wget`:
|
63 |
|
|
|
|
|
64 |
Similar `wget` command as in [BOP website](https://bop.felk.cvut.cz/datasets/) can be used to download the dataset from huggingface hub:
|
65 |
```
|
66 |
export SRC=https://huggingface.co/datasets/bop-benchmark/datasets/resolve/main
|
|
|
70 |
wget $SRC/lm/lm_test_all.zip # All test images ("_bop19" for a subset)
|
71 |
wget $SRC/lm/lm_train_pbr.zip # PBR training images
|
72 |
```
|
|
|
73 |
|
74 |
Datasets are stored in `.zip` format. You can extract them using the following command:
|
75 |
```
|
|
|
82 |
export HF_HUB_ENABLE_HF_TRANSFER=1
|
83 |
```
|
84 |
|
85 |
+
</details>
|
86 |
+
|
87 |
## Uploading datasets
|
88 |
|
89 |
+
<details><summary>Click to expand</summary>
|
90 |
+
|
91 |
You create a new dataset and want to share it with BOP community. Here is a step-by-step guide to upload the dataset and create a pull request to [our huggingface hub](https://huggingface.co/datasets/bop-benchmark/datasets/). Feel free to reach out to [email protected] if you have any questions.
|
92 |
|
93 |
Similar to the download process, you can upload the dataset using the `huggingface_hub` library or `huggingface_hub[cli]`. We recommend using `huggingface_hub[cli]` for its simplicity.
|
94 |
|
95 |
#### Option 1: Using `huggingface_hub[cli]`:
|
96 |
|
|
|
|
|
97 |
a. Install the library:
|
98 |
```
|
99 |
pip install -U "huggingface_hub[cli]"
|
|
|
127 |
huggingface-cli upload bop-benchmark/datasets $LOCAL_FOLDER $HF_FOLDER --repo-type=dataset --create-pr
|
128 |
```
|
129 |
|
|
|
|
|
130 |
#### Option 2: Using `huggingface_hub`:
|
131 |
|
|
|
|
|
132 |
a. Install the library:
|
133 |
```
|
134 |
pip install --upgrade huggingface_hub
|
|
|
163 |
```
|
164 |
If your dataset is large (> 500 GB), you can upload it in chunks by adding the `multi_commits=True, multi_commits_verbose=True,` argument. More options are available in the [official documentation](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/package_reference/hf_api#huggingface_hub.HfApi.create_pull_request).
|
165 |
|
|
|
|
|
166 |
## FAQ
|
167 |
|
168 |
+
<details><summary>Click to expand</summary>
|
169 |
+
|
170 |
#### 1. How to upload a large file > 50 GB?
|
171 |
Note that HuggingFace limits the size of each file to 50 GB. If your dataset is larger, you can split it into smaller files:
|
172 |
```
|
|
|
186 |
pip install huggingface_hub[hf_transfer]
|
187 |
export HF_HUB_ENABLE_HF_TRANSFER=1
|
188 |
```
|
189 |
+
</details>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|