Spaces:
Sleeping
Sleeping
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
import logging | |
from typing import List, Optional, Union | |
import datasets | |
import evaluate | |
import numpy as np | |
logger = logging.getLogger(__name__) | |
# TODO: Add BibTeX citation | |
_CITATION = """\ | |
@InProceedings{huggingface:module, | |
title = {A great new module}, | |
authors={huggingface, Inc.}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the module here | |
_DESCRIPTION = """\ | |
This new module is designed to solve this great ML task and is crafted with a lot of care. | |
""" | |
# TODO: Add description of the arguments of the module here | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, using certain scores | |
Args: | |
predictions: list of predictions to score. Each predictions | |
should be a string with tokens separated by spaces. | |
references: list of reference for each prediction. Each | |
reference should be a string with tokens separated by spaces. | |
Returns: | |
accuracy: description of the first score, | |
another_score: description of the second score, | |
Examples: | |
Examples should be written in doctest format, and should illustrate how | |
to use the function. | |
>>> my_new_module = evaluate.load("my_new_module") | |
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) | |
>>> print(results) | |
{'accuracy': 1.0} | |
""" | |
class patch_series(evaluate.Metric): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.matching_series_metric = evaluate.load("bowdbeg/matching_series") | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features( | |
{ | |
"predictions": datasets.Value("int64"), | |
"references": datasets.Value("int64"), | |
} | |
), | |
# Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"], | |
) | |
def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]: | |
"""""" | |
all_kwargs = {"predictions": predictions, "references": references, **kwargs} | |
if predictions is None and references is None: | |
missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs} | |
all_kwargs.update(missing_kwargs) | |
else: | |
missing_inputs = [k for k in self._feature_names() if k not in all_kwargs] | |
if missing_inputs: | |
raise ValueError( | |
f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}" | |
) | |
inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()} | |
compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()} | |
return self._compute(**inputs, **compute_kwargs) | |
def _compute( | |
self, | |
predictions: Union[List, np.ndarray], | |
references: Union[List, np.ndarray], | |
patch_length: List[int] = [1], | |
strides: Union[List[int], None] = None, | |
**kwargs, | |
): | |
"""Compute the evaluation score for bowdbeg/matching_series for each patch and take mean.""" | |
if strides is None: | |
strides = patch_length | |
assert len(patch_length) == len(strides), "The patch_length and strides should have the same length." | |
predictions = np.array(predictions) | |
references = np.array(references) | |
if not all(predictions.shape[1] % p == 0 for p in patch_length) and not all( | |
references.shape[1] % p == 0 for p in patch_length | |
): | |
raise ValueError("The patch_length should divide the length of the predictions and references.") | |
if len(predictions.shape) != 3: | |
raise ValueError("Predictions should have shape (batch_size, sequence_length, num_features)") | |
if len(patch_length) == 0: | |
raise ValueError("The patch_length should be a list of integers.") | |
res_sum: Union[None, dict] = None | |
orig_pred_shape = predictions.shape | |
orig_ref_shape = references.shape | |
for patch, stride in zip(patch_length, strides): | |
# create patched predictions and references | |
patched_predictions = self.get_patches(predictions, patch, stride, axis=1) | |
patched_references = self.get_patches(references, patch, stride, axis=1) | |
patched_predictions = patched_predictions.reshape(-1, patch, orig_pred_shape[2]) | |
patched_references = patched_references.reshape(-1, patch, orig_ref_shape[2]) | |
# compute the score for each patch | |
res = self.matching_series_metric.compute( | |
predictions=patched_predictions, references=patched_references, **kwargs | |
) | |
# sum the results | |
if res_sum is None: | |
res_sum = res | |
else: | |
assert isinstance(res_sum, dict) | |
assert isinstance(res, dict) | |
for key in res_sum: | |
if isinstance(res_sum[key], (list, np.ndarray)): | |
res_sum[key] = np.array(res_sum[key]) + np.array(res[key]) | |
elif isinstance(res_sum[key], (float, int)): | |
res_sum[key] += res[key] | |
else: | |
logger.warning(f"Unsupported type for key {key}: {type(res_sum[key])}") | |
del res_sum[key] | |
# take the mean of the results | |
assert isinstance(res_sum, dict) | |
for key in res_sum: | |
if isinstance(res_sum[key], (list, np.ndarray)): | |
res_sum[key] = np.array(res_sum[key]) / len(patch_length) | |
else: | |
res_sum[key] /= len(patch_length) | |
return res_sum | |
def get_patches(series: np.ndarray, patch_length: int, stride: int, axis=0): | |
# create patched predictions and references | |
o = np.lib.stride_tricks.sliding_window_view(series, window_shape=patch_length, axis=axis) | |
o = o[::stride] | |
return o | |